Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Multivariate Time Series Analysis
With R and Financial Applications, Wiley Series in Probability and Statistics
Buch von Ruey S Tsay
Sprache: Englisch

145,00 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Preface xv

Acknowledgements xvii

1 Multivariate Linear Time Series 1

1.1 Introduction, 1

1.2 Some Basic Concepts, 5

1.3 Cross-Covariance and Correlation Matrices, 8

1.4 Sample CCM, 9

1.5 Testing Zero Cross-Correlations, 12

1.6 Forecasting, 16

1.7 Model Representations, 18

1.8 Outline of the Book, 22

1.9 Software, 23

Exercises, 23

2 Stationary Vector Autoregressive Time Series 27

2.1 Introduction, 27

2.2 VAR(1) Models, 28

2.3 VAR(2) Models, 37

2.4 VAR(p) Models, 41

2.5 Estimation, 44

2.6 Order Selection, 61

2.7 Model Checking, 66

2.8 Linear Constraints, 80

2.9 Forecasting, 82

2.10 Impulse Response Functions, 89

2.11 Forecast Error Variance Decomposition, 96

2.12 Proofs, 98

Exercises, 100

3 Vector Autoregressive Moving-Average Time Series 105

3.1 Vector MA Models, 106

3.2 Specifying VMA Order, 112

3.3 Estimation of VMA Models, 113

3.4 Forecasting of VMA Models, 126

3.5 VARMA Models, 127

3.6 Implications of VARMA Models, 139

3.7 Linear Transforms of VARMA Processes, 141

3.8 Temporal Aggregation of VARMA Processes, 144

3.9 Likelihood Function of a VARMA Model, 146

3.10 Innovations Approach to Exact Likelihood Function, 155

3.11 Asymptotic Distribution of Maximum Likelihood Estimates, 160

3.12 Model Checking of Fitted VARMA Models, 163

3.13 Forecasting of VARMA Models, 164

3.14 Tentative Order Identification, 166

3.15 Empirical Analysis of VARMA Models, 176

3.16 Appendix, 192

Exercises, 194

4 Structural Specification of VARMA Models 199

4.1 The Kronecker Index Approach, 200

4.2 The Scalar Component Approach, 212

4.3 Statistics for Order Specification, 220

4.4 Finding Kronecker Indices, 222

4.5 Finding Scalar Component Models, 226

4.6 Estimation, 237

4.7 An Example, 245

4.8 Appendix: Canonical Correlation Analysis, 259

Exercises, 262

5 Unit-Root Nonstationary Processes 265

5.1 Univariate Unit-Root Processes, 266

5.2 Multivariate Unit-Root Processes, 279

5.3 Spurious Regressions, 290

5.4 Multivariate Exponential Smoothing, 291

5.5 Cointegration, 294

5.6 An Error-Correction Form, 297

5.7 Implications of Cointegrating Vectors, 300

5.8 Parameterization of Cointegrating Vectors, 302

5.9 Cointegration Tests, 303

5.10 Estimation of Error-Correction Models, 313

5.11 Applications, 319

5.12 Discussion, 326

5.13 Appendix, 327

Exercises, 328

6 Factor Models and Selected Topics 333

6.1 Seasonal Models, 333

6.2 Principal Component Analysis, 341

6.3 Use of Exogenous Variables, 345

6.4 Missing Values, 357

6.5 Factor Models, 364

6.6 Classification and Clustering Analysis, 386

Exercises, 394

7 Multivariate Volatility Models 399

7.1 Testing Conditional Heteroscedasticity, 401

7.2 Estimation of Multivariate Volatility Models, 407

7.3 Diagnostic Checks of Volatility Models, 409

7.4 Exponentially Weighted Moving Average, 414

7.5 BEKK Models, 417

7.6 Cholesky Decomposition and Volatility Modeling, 420

7.7 Dynamic Conditional Correlation Models, 428

7.8 Orthog
Preface xv

Acknowledgements xvii

1 Multivariate Linear Time Series 1

1.1 Introduction, 1

1.2 Some Basic Concepts, 5

1.3 Cross-Covariance and Correlation Matrices, 8

1.4 Sample CCM, 9

1.5 Testing Zero Cross-Correlations, 12

1.6 Forecasting, 16

1.7 Model Representations, 18

1.8 Outline of the Book, 22

1.9 Software, 23

Exercises, 23

2 Stationary Vector Autoregressive Time Series 27

2.1 Introduction, 27

2.2 VAR(1) Models, 28

2.3 VAR(2) Models, 37

2.4 VAR(p) Models, 41

2.5 Estimation, 44

2.6 Order Selection, 61

2.7 Model Checking, 66

2.8 Linear Constraints, 80

2.9 Forecasting, 82

2.10 Impulse Response Functions, 89

2.11 Forecast Error Variance Decomposition, 96

2.12 Proofs, 98

Exercises, 100

3 Vector Autoregressive Moving-Average Time Series 105

3.1 Vector MA Models, 106

3.2 Specifying VMA Order, 112

3.3 Estimation of VMA Models, 113

3.4 Forecasting of VMA Models, 126

3.5 VARMA Models, 127

3.6 Implications of VARMA Models, 139

3.7 Linear Transforms of VARMA Processes, 141

3.8 Temporal Aggregation of VARMA Processes, 144

3.9 Likelihood Function of a VARMA Model, 146

3.10 Innovations Approach to Exact Likelihood Function, 155

3.11 Asymptotic Distribution of Maximum Likelihood Estimates, 160

3.12 Model Checking of Fitted VARMA Models, 163

3.13 Forecasting of VARMA Models, 164

3.14 Tentative Order Identification, 166

3.15 Empirical Analysis of VARMA Models, 176

3.16 Appendix, 192

Exercises, 194

4 Structural Specification of VARMA Models 199

4.1 The Kronecker Index Approach, 200

4.2 The Scalar Component Approach, 212

4.3 Statistics for Order Specification, 220

4.4 Finding Kronecker Indices, 222

4.5 Finding Scalar Component Models, 226

4.6 Estimation, 237

4.7 An Example, 245

4.8 Appendix: Canonical Correlation Analysis, 259

Exercises, 262

5 Unit-Root Nonstationary Processes 265

5.1 Univariate Unit-Root Processes, 266

5.2 Multivariate Unit-Root Processes, 279

5.3 Spurious Regressions, 290

5.4 Multivariate Exponential Smoothing, 291

5.5 Cointegration, 294

5.6 An Error-Correction Form, 297

5.7 Implications of Cointegrating Vectors, 300

5.8 Parameterization of Cointegrating Vectors, 302

5.9 Cointegration Tests, 303

5.10 Estimation of Error-Correction Models, 313

5.11 Applications, 319

5.12 Discussion, 326

5.13 Appendix, 327

Exercises, 328

6 Factor Models and Selected Topics 333

6.1 Seasonal Models, 333

6.2 Principal Component Analysis, 341

6.3 Use of Exogenous Variables, 345

6.4 Missing Values, 357

6.5 Factor Models, 364

6.6 Classification and Clustering Analysis, 386

Exercises, 394

7 Multivariate Volatility Models 399

7.1 Testing Conditional Heteroscedasticity, 401

7.2 Estimation of Multivariate Volatility Models, 407

7.3 Diagnostic Checks of Volatility Models, 409

7.4 Exponentially Weighted Moving Average, 414

7.5 BEKK Models, 417

7.6 Cholesky Decomposition and Volatility Modeling, 420

7.7 Dynamic Conditional Correlation Models, 428

7.8 Orthog
Details
Erscheinungsjahr: 2014
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 520 S.
ISBN-13: 9781118617908
ISBN-10: 1118617908
Sprache: Englisch
Einband: Gebunden
Autor: Tsay, Ruey S
Auflage: 1/2014
Hersteller: Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 241 x 164 x 32 mm
Von/Mit: Ruey S Tsay
Erscheinungsdatum: 28.01.2014
Gewicht: 0,917 kg
Artikel-ID: 107539249
Details
Erscheinungsjahr: 2014
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 520 S.
ISBN-13: 9781118617908
ISBN-10: 1118617908
Sprache: Englisch
Einband: Gebunden
Autor: Tsay, Ruey S
Auflage: 1/2014
Hersteller: Wiley-VCH GmbH
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 241 x 164 x 32 mm
Von/Mit: Ruey S Tsay
Erscheinungsdatum: 28.01.2014
Gewicht: 0,917 kg
Artikel-ID: 107539249
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte