Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Mathematics of Deep Learning
An Introduction
Taschenbuch von Leonid Berlyand (u. a.)
Sprache: Englisch

41,45 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
The goal of this book is to provide a mathematical perspective on some key elements of the so-called deep neural networks (DNNs). Much of the interest in deep learning has focused on the implementation of DNN-based algorithms. Our hope is that this compact textbook will offer a complementary point of view that emphasizes the underlying mathematical ideas. We believe that a more foundational perspective will help to answer important questions that have only received empirical answers so far.

The material is based on a one-semester course Introduction to Mathematics of Deep Learning" for senior undergraduate mathematics majors and first year graduate students in mathematics. Our goal is to introduce basic concepts from deep learning in a rigorous mathematical fashion, e.g introduce mathematical definitions of deep neural networks (DNNs), loss functions, the backpropagation algorithm, etc. We attempt to identify for each concept the simplest setting that minimizes technicalities but still contains the key mathematics.

The goal of this book is to provide a mathematical perspective on some key elements of the so-called deep neural networks (DNNs). Much of the interest in deep learning has focused on the implementation of DNN-based algorithms. Our hope is that this compact textbook will offer a complementary point of view that emphasizes the underlying mathematical ideas. We believe that a more foundational perspective will help to answer important questions that have only received empirical answers so far.

The material is based on a one-semester course Introduction to Mathematics of Deep Learning" for senior undergraduate mathematics majors and first year graduate students in mathematics. Our goal is to introduce basic concepts from deep learning in a rigorous mathematical fashion, e.g introduce mathematical definitions of deep neural networks (DNNs), loss functions, the backpropagation algorithm, etc. We attempt to identify for each concept the simplest setting that minimizes technicalities but still contains the key mathematics.

Details
Empfohlen (bis): 16
Empfohlen (von): 13
Erscheinungsjahr: 2023
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: VI
126 S.
20 s/w Illustr.
30 farbige Illustr.
20 b/w and 30 col. ill.
ISBN-13: 9783111024318
ISBN-10: 3111024318
Sprache: Englisch
Ausstattung / Beilage: Großformatiges Paperback. Klappenbroschur
Autor: Berlyand, Leonid
Jabin, Pierre-Emmanuel
Hersteller: De Gruyter
Abbildungen: 20 b/w and 30 col. ill.
Maße: 8 x 169 x 240 mm
Von/Mit: Leonid Berlyand (u. a.)
Erscheinungsdatum: 27.04.2023
Gewicht: 0,265 kg
Artikel-ID: 126044570
Details
Empfohlen (bis): 16
Empfohlen (von): 13
Erscheinungsjahr: 2023
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: VI
126 S.
20 s/w Illustr.
30 farbige Illustr.
20 b/w and 30 col. ill.
ISBN-13: 9783111024318
ISBN-10: 3111024318
Sprache: Englisch
Ausstattung / Beilage: Großformatiges Paperback. Klappenbroschur
Autor: Berlyand, Leonid
Jabin, Pierre-Emmanuel
Hersteller: De Gruyter
Abbildungen: 20 b/w and 30 col. ill.
Maße: 8 x 169 x 240 mm
Von/Mit: Leonid Berlyand (u. a.)
Erscheinungsdatum: 27.04.2023
Gewicht: 0,265 kg
Artikel-ID: 126044570
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte