Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Lineare Algebra
Taschenbuch von Gilbert Strang
Sprache: Deutsch

59,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
Diese Einführung in die lineare Algebra bietet einen sehr anschaulichen Zugang zum Thema. Die englische Originalausgabe wurde rasch zum Standardwerk in den Anfängerkursen des Massachusetts Institute of Technology sowie in vielen anderen nordamerikanischen Universitäten. Auch hierzulande ist dieses Buch als Grundstudiumsvorlesung für alle Studenten hervorragend lesbar. Darüber hinaus gibt es neue Impulse in der Mathematikausbildung und folgt dem Trend hin zu Anwendungen und Interdisziplinarität.

Inhaltlich umfasst das Werk die Grundkenntnisse und die wichtigsten Anwendungen der linearen Algebra und eignet sich hervorragend für Studierende der Ingenieurwissenschaften, Naturwissenschaften, Mathematik und Informatik, die einen modernen Zugang zum Einsatz der linearen Algebra suchen. Ganz klar liegt hierbei der Schwerpunkt auf den Anwendungen, ohne dabei die mathematische Strenge zu vernachlässigen. Im Buch wird die jeweils zugrundeliegende Theorie mit zahlreichen Beispielen aus der Elektrotechnik, der Informatik, der Physik, Biologie und den Wirtschaftswissenschaften direkt verknüpft. Zahlreiche Aufgaben mit Lösungen runden das Werk ab.
Diese Einführung in die lineare Algebra bietet einen sehr anschaulichen Zugang zum Thema. Die englische Originalausgabe wurde rasch zum Standardwerk in den Anfängerkursen des Massachusetts Institute of Technology sowie in vielen anderen nordamerikanischen Universitäten. Auch hierzulande ist dieses Buch als Grundstudiumsvorlesung für alle Studenten hervorragend lesbar. Darüber hinaus gibt es neue Impulse in der Mathematikausbildung und folgt dem Trend hin zu Anwendungen und Interdisziplinarität.

Inhaltlich umfasst das Werk die Grundkenntnisse und die wichtigsten Anwendungen der linearen Algebra und eignet sich hervorragend für Studierende der Ingenieurwissenschaften, Naturwissenschaften, Mathematik und Informatik, die einen modernen Zugang zum Einsatz der linearen Algebra suchen. Ganz klar liegt hierbei der Schwerpunkt auf den Anwendungen, ohne dabei die mathematische Strenge zu vernachlässigen. Im Buch wird die jeweils zugrundeliegende Theorie mit zahlreichen Beispielen aus der Elektrotechnik, der Informatik, der Physik, Biologie und den Wirtschaftswissenschaften direkt verknüpft. Zahlreiche Aufgaben mit Lösungen runden das Werk ab.
Zusammenfassung

Ideale Einführung in die lineare Algebra, in der eindeutig der Schwerpunkt auf den Anwendungen sowie dem wissenschaftlichen Rechnen liegt. Sie vermittelt die Grundkenntnisse und die wichtigsten Anwendungen der linearen Algebra und eignet sich hervorragend für Studierende der Ingenieurwissenschaften, Naturwissenschaften, Mathematik und Informatik, die einen modernen Zugang zum Einsatz der linearen Algebra suchen. Die Theorie wird mit zahlreichen Beispielen aus der Elektromechanik, der Informatik, der Physik, Biologie und den Wirtschaftswissenschaften verknüpft. Mit zahlreichen Aufgaben mit Lösungen.

Inhaltsverzeichnis
1 Einführung in die Vektorrechnung.- 1.1 Vektoren und Linearkombinationen.- 1.2 Längen und Skalarprodukte.- 2 Das Lösen linearer Gleichungen.- 2.1 Vektoren und lineare Gleichungen.- 2.2 Die Idee der Elimination.- 2.3 Elimination mit Hilfe von Matrizen.- 2.4 Regeln für Matrixoperationen.- 2.5 Inverse Matrizen.- 2.6 Elimination = Faktorisierung: A=LU.- 2.7 Transponierte und Permutationen.- 3 Vektorräume und Untervektorräume.- 3.1 Räume von Vektoren.- 3.2 Der Kern von A: Lösung von Ax = 0.- 3.3 Die Rang und die reduzierte Treppenform.- 3.4 Die vollständige Lösung von Ax = b.- 3.5 Unabhängigkeit, Basis und Dimension.- 3.6 Dimensionen der vier Unterräume.- 4 Orthogonalität.- 4.1 Orthogonalität der vier Unterräume.- 4.2 Projektionen.- 4.3 Kleinste-Quadrate Approximationen.- 4.4 Orthogonale Basen und Gram-Schmidt.- 5 Determinanten.- 5.1 Die Eigenschaften von Determinanten.- 5.2 Permutationen und Kofaktoren.- 5.3 Cramer'sche Regel, Inverse und Volumen.- 6 Eigenwerte und Eigenvektoren.- 6.1 Eigenwert e: Einführung.- 6.2 Diagonalisierung einer Matrix.- 6.3 Anwendungen bei Differentialgleichungen.- 6.4 Symmetrische Matrizen.- 6.5 Positiv definite Matrizen.- 6.6 Ähnliche Matrizen.- 6.7 Singulärwertzerlegung.- 7 Lineare Abbildungen.- 7.1 Die Idee einer linearen Abbildung.- 7.2 Die Matrix einer linearen Abbildung.- 7.3 Basiswechsel.- 7.4 Diagonalisierung und Pseudoinverse.- 8 Anwendungen.- 8.1 Graphen und Netzwerke.- 8.2 Markov-Matrizen und Wirtschaftsmodelle.- 8.3 Lineare Programmierung.- 8.4 Fourierreihen: Lineare Algebra für Funktionen.- 8.5 Computergrafik.- 9 Numerische lineare Algebra.- 9.1 Gauß' sche Elimination in der Praxis.- 9.2 Normen und Konditionszahlen.- 9.3 Iterative Methoden für lineare Algebra.- 10 Komplexe Vektoren und Matrizen.- 10.1Komplexe Zahlen.- 10.2 Hermitesche und unitäre Matrizen.- 10.3 Die schnelle Fouriertransformation.- Lösungen zu ausgewählten Aufgaben.- Eine Abschlussklausur.- Matrix-Faktorisierungen.- Durchgerechnete Aufgaben.- Unterrichtscodes.
Details
Erscheinungsjahr: 2003
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Springer-Lehrbuch
Inhalt: xii
656 S.
21 s/w Illustr.
656 S. 21 Abb.
ISBN-13: 9783540439493
ISBN-10: 3540439498
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Strang, Gilbert
Übersetzung: Dellnitz, M.
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Springer-Lehrbuch
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 36 mm
Von/Mit: Gilbert Strang
Erscheinungsdatum: 12.03.2003
Gewicht: 1,001 kg
Artikel-ID: 102572173
Zusammenfassung

Ideale Einführung in die lineare Algebra, in der eindeutig der Schwerpunkt auf den Anwendungen sowie dem wissenschaftlichen Rechnen liegt. Sie vermittelt die Grundkenntnisse und die wichtigsten Anwendungen der linearen Algebra und eignet sich hervorragend für Studierende der Ingenieurwissenschaften, Naturwissenschaften, Mathematik und Informatik, die einen modernen Zugang zum Einsatz der linearen Algebra suchen. Die Theorie wird mit zahlreichen Beispielen aus der Elektromechanik, der Informatik, der Physik, Biologie und den Wirtschaftswissenschaften verknüpft. Mit zahlreichen Aufgaben mit Lösungen.

Inhaltsverzeichnis
1 Einführung in die Vektorrechnung.- 1.1 Vektoren und Linearkombinationen.- 1.2 Längen und Skalarprodukte.- 2 Das Lösen linearer Gleichungen.- 2.1 Vektoren und lineare Gleichungen.- 2.2 Die Idee der Elimination.- 2.3 Elimination mit Hilfe von Matrizen.- 2.4 Regeln für Matrixoperationen.- 2.5 Inverse Matrizen.- 2.6 Elimination = Faktorisierung: A=LU.- 2.7 Transponierte und Permutationen.- 3 Vektorräume und Untervektorräume.- 3.1 Räume von Vektoren.- 3.2 Der Kern von A: Lösung von Ax = 0.- 3.3 Die Rang und die reduzierte Treppenform.- 3.4 Die vollständige Lösung von Ax = b.- 3.5 Unabhängigkeit, Basis und Dimension.- 3.6 Dimensionen der vier Unterräume.- 4 Orthogonalität.- 4.1 Orthogonalität der vier Unterräume.- 4.2 Projektionen.- 4.3 Kleinste-Quadrate Approximationen.- 4.4 Orthogonale Basen und Gram-Schmidt.- 5 Determinanten.- 5.1 Die Eigenschaften von Determinanten.- 5.2 Permutationen und Kofaktoren.- 5.3 Cramer'sche Regel, Inverse und Volumen.- 6 Eigenwerte und Eigenvektoren.- 6.1 Eigenwert e: Einführung.- 6.2 Diagonalisierung einer Matrix.- 6.3 Anwendungen bei Differentialgleichungen.- 6.4 Symmetrische Matrizen.- 6.5 Positiv definite Matrizen.- 6.6 Ähnliche Matrizen.- 6.7 Singulärwertzerlegung.- 7 Lineare Abbildungen.- 7.1 Die Idee einer linearen Abbildung.- 7.2 Die Matrix einer linearen Abbildung.- 7.3 Basiswechsel.- 7.4 Diagonalisierung und Pseudoinverse.- 8 Anwendungen.- 8.1 Graphen und Netzwerke.- 8.2 Markov-Matrizen und Wirtschaftsmodelle.- 8.3 Lineare Programmierung.- 8.4 Fourierreihen: Lineare Algebra für Funktionen.- 8.5 Computergrafik.- 9 Numerische lineare Algebra.- 9.1 Gauß' sche Elimination in der Praxis.- 9.2 Normen und Konditionszahlen.- 9.3 Iterative Methoden für lineare Algebra.- 10 Komplexe Vektoren und Matrizen.- 10.1Komplexe Zahlen.- 10.2 Hermitesche und unitäre Matrizen.- 10.3 Die schnelle Fouriertransformation.- Lösungen zu ausgewählten Aufgaben.- Eine Abschlussklausur.- Matrix-Faktorisierungen.- Durchgerechnete Aufgaben.- Unterrichtscodes.
Details
Erscheinungsjahr: 2003
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Springer-Lehrbuch
Inhalt: xii
656 S.
21 s/w Illustr.
656 S. 21 Abb.
ISBN-13: 9783540439493
ISBN-10: 3540439498
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Strang, Gilbert
Übersetzung: Dellnitz, M.
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Springer-Lehrbuch
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 36 mm
Von/Mit: Gilbert Strang
Erscheinungsdatum: 12.03.2003
Gewicht: 1,001 kg
Artikel-ID: 102572173
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte