Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Geometric Analysis
Buch von Peter Li
Sprache: Englisch

61,40 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This graduate-level text demonstrates the basic techniques for researchers interested in the field of geometric analysis.
This graduate-level text demonstrates the basic techniques for researchers interested in the field of geometric analysis.
Über den Autor
Peter Li is Chancellor's Professor at the University of California, Irvine.
Inhaltsverzeichnis
Introduction; 1. First and second variational formulas for area; 2. Volume comparison theorem; 3. Bochner-Weitzenböck formulas; 4. Laplacian comparison theorem; 5. Poincaré inequality and the first eigenvalue; 6. Gradient estimate and Harnack inequality; 7. Mean value inequality; 8. Reilly's formula and applications; 9. Isoperimetric inequalities and Sobolev inequalities; 10. The heat equation; 11. Properties and estimates of the heat kernel; 12. Gradient estimate and Harnack inequality for the heat equation; 13. Upper and lower bounds for the heat kernel; 14. Sobolev inequality, Poincaré inequality and parabolic mean value inequality; 15. Uniqueness and maximum principle for the heat equation; 16. Large time behavior of the heat kernel; 17. Green's function; 18. Measured Neumann-Poincaré inequality and measured Sobolev inequality; 19. Parabolic Harnack inequality and regularity theory; 20. Parabolicity; 21. Harmonic functions and ends; 22. Manifolds with positive spectrum; 23. Manifolds with Ricci curvature bounded from below; 24. Manifolds with finite volume; 25. Stability of minimal hypersurfaces in a 3-manifold; 26. Stability of minimal hypersurfaces in a higher dimensional manifold; 27. Linear growth harmonic functions; 28. Polynomial growth harmonic functions; 29. Lq harmonic functions; 30. Mean value constant, Liouville property, and minimal submanifolds; 31. Massive sets; 32. The structure of harmonic maps into a Cartan-Hadamard manifold; Appendix A. Computation of warped product metrics; Appendix B. Polynomial growth harmonic functions on Euclidean space; References; Index.
Details
Erscheinungsjahr: 2015
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9781107020641
ISBN-10: 1107020646
Sprache: Englisch
Ausstattung / Beilage: HC gerader Rücken kaschiert
Einband: Gebunden
Autor: Li, Peter
Hersteller: Cambridge University Press
Maße: 235 x 157 x 27 mm
Von/Mit: Peter Li
Erscheinungsdatum: 10.02.2015
Gewicht: 0,753 kg
Artikel-ID: 106598745
Über den Autor
Peter Li is Chancellor's Professor at the University of California, Irvine.
Inhaltsverzeichnis
Introduction; 1. First and second variational formulas for area; 2. Volume comparison theorem; 3. Bochner-Weitzenböck formulas; 4. Laplacian comparison theorem; 5. Poincaré inequality and the first eigenvalue; 6. Gradient estimate and Harnack inequality; 7. Mean value inequality; 8. Reilly's formula and applications; 9. Isoperimetric inequalities and Sobolev inequalities; 10. The heat equation; 11. Properties and estimates of the heat kernel; 12. Gradient estimate and Harnack inequality for the heat equation; 13. Upper and lower bounds for the heat kernel; 14. Sobolev inequality, Poincaré inequality and parabolic mean value inequality; 15. Uniqueness and maximum principle for the heat equation; 16. Large time behavior of the heat kernel; 17. Green's function; 18. Measured Neumann-Poincaré inequality and measured Sobolev inequality; 19. Parabolic Harnack inequality and regularity theory; 20. Parabolicity; 21. Harmonic functions and ends; 22. Manifolds with positive spectrum; 23. Manifolds with Ricci curvature bounded from below; 24. Manifolds with finite volume; 25. Stability of minimal hypersurfaces in a 3-manifold; 26. Stability of minimal hypersurfaces in a higher dimensional manifold; 27. Linear growth harmonic functions; 28. Polynomial growth harmonic functions; 29. Lq harmonic functions; 30. Mean value constant, Liouville property, and minimal submanifolds; 31. Massive sets; 32. The structure of harmonic maps into a Cartan-Hadamard manifold; Appendix A. Computation of warped product metrics; Appendix B. Polynomial growth harmonic functions on Euclidean space; References; Index.
Details
Erscheinungsjahr: 2015
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9781107020641
ISBN-10: 1107020646
Sprache: Englisch
Ausstattung / Beilage: HC gerader Rücken kaschiert
Einband: Gebunden
Autor: Li, Peter
Hersteller: Cambridge University Press
Maße: 235 x 157 x 27 mm
Von/Mit: Peter Li
Erscheinungsdatum: 10.02.2015
Gewicht: 0,753 kg
Artikel-ID: 106598745
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte

Taschenbuch