Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Fundamentals of Diophantine Geometry
Taschenbuch von S. Lang
Sprache: Englisch

72,25 €*

-16 % UVP 85,59 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.
Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.
Inhaltsverzeichnis
1 Absolute Values.- 2 Proper Sets of Absolute Values. Divisors and Units.- 3 Heights.- 4 Geometric Properties of Heights.- 5 Heights on Abelian Varieties.- 6 The Mordell-Weil Theorem.- 7 The Thue-Siegel-Roth Theorem.- 8 Siegel¿s Theorem and Integral Points.- 9 Hilbert¿s Irreducibility Theorem.- 10 Weil Functions and Néron Divisors.- 11 Néron Functions on Abelian Varieties.- 12 Algebraic Families of Néron Functions.- 13 Néron Functions Over the Complex Numbers.- Review of S. Lang¿s Diophantine Geometry, by L. J. Mordell.- Review of L. J. Mordell¿s Diophantine Equations, by S. Lang.
Details
Erscheinungsjahr: 2010
Fachbereich: Geometrie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xviii
370 S.
ISBN-13: 9781441928184
ISBN-10: 1441928189
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Lang, S.
Auflage: Softcover reprint of hardcover 1st edition 1983
Hersteller: Springer US
Springer New York
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 22 mm
Von/Mit: S. Lang
Erscheinungsdatum: 03.12.2010
Gewicht: 0,593 kg
Artikel-ID: 107174145
Inhaltsverzeichnis
1 Absolute Values.- 2 Proper Sets of Absolute Values. Divisors and Units.- 3 Heights.- 4 Geometric Properties of Heights.- 5 Heights on Abelian Varieties.- 6 The Mordell-Weil Theorem.- 7 The Thue-Siegel-Roth Theorem.- 8 Siegel¿s Theorem and Integral Points.- 9 Hilbert¿s Irreducibility Theorem.- 10 Weil Functions and Néron Divisors.- 11 Néron Functions on Abelian Varieties.- 12 Algebraic Families of Néron Functions.- 13 Néron Functions Over the Complex Numbers.- Review of S. Lang¿s Diophantine Geometry, by L. J. Mordell.- Review of L. J. Mordell¿s Diophantine Equations, by S. Lang.
Details
Erscheinungsjahr: 2010
Fachbereich: Geometrie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xviii
370 S.
ISBN-13: 9781441928184
ISBN-10: 1441928189
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Lang, S.
Auflage: Softcover reprint of hardcover 1st edition 1983
Hersteller: Springer US
Springer New York
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 22 mm
Von/Mit: S. Lang
Erscheinungsdatum: 03.12.2010
Gewicht: 0,593 kg
Artikel-ID: 107174145
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte