Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Data Analysis Using Regression and Multilevel Hierarchical Models
Taschenbuch von Andrew Gelman (u. a.)
Sprache: Englisch

77,10 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. It introduces and demonstrates a variety of models and instructs the reader in how to fit these models using freely available software packages.
Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. It introduces and demonstrates a variety of models and instructs the reader in how to fit these models using freely available software packages.
Über den Autor
Andrew Gelman is Professor of Statistics and Professor of Political Science at Columbia University. He has published over 150 articles in statistical theory, methods, and computation, and in applications areas including decision analysis, survey sampling, political science, public health, and policy. His other books are Bayesian Data Analysis (1995, second edition 2003) and Teaching Statistics: A Bag of Tricks (2002).
Inhaltsverzeichnis
1. Why?; 2. Concepts and methods from basic probability and statistics; Part I. A. Single-Level Regression: 3. Linear regression: the basics; 4. Linear regression: before and after fitting the model; 5. Logistic regression; 6. Generalized linear models; Part I. B. Working with Regression Inferences: 7. Simulation of probability models and statistical inferences; 8. Simulation for checking statistical procedures and model fits; 9. Causal inference using regression on the treatment variable; 10. Causal inference using more advanced models; Part II. A. Multilevel Regression: 11. Multilevel structures; 12. Multilevel linear models: the basics; 13. Multilevel linear models: varying slopes, non-nested models and other complexities; 14. Multilevel logistic regression; 15. Multilevel generalized linear models; Part II. B. Fitting Multilevel Models: 16. Multilevel modeling in bugs and R: the basics; 17. Fitting multilevel linear and generalized linear models in bugs and R; 18. Likelihood and Bayesian inference and computation; 19. Debugging and speeding convergence; Part III. From Data Collection to Model Understanding to Model Checking: 20. Sample size and power calculations; 21. Understanding and summarizing the fitted models; 22. Analysis of variance; 23. Causal inference using multilevel models; 24. Model checking and comparison; 25. Missing data imputation; Appendixes: A. Six quick tips to improve your regression modeling; B. Statistical graphics for research and presentation; C. Software; References.
Details
Erscheinungsjahr: 2019
Genre: Soziologie
Rubrik: Wissenschaften
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9780521686891
ISBN-10: 052168689X
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Gelman, Andrew
Hill, Jennifer
Hersteller: Cambridge University Press
Maße: 254 x 178 x 35 mm
Von/Mit: Andrew Gelman (u. a.)
Erscheinungsdatum: 06.03.2019
Gewicht: 1,199 kg
Artikel-ID: 102064319
Über den Autor
Andrew Gelman is Professor of Statistics and Professor of Political Science at Columbia University. He has published over 150 articles in statistical theory, methods, and computation, and in applications areas including decision analysis, survey sampling, political science, public health, and policy. His other books are Bayesian Data Analysis (1995, second edition 2003) and Teaching Statistics: A Bag of Tricks (2002).
Inhaltsverzeichnis
1. Why?; 2. Concepts and methods from basic probability and statistics; Part I. A. Single-Level Regression: 3. Linear regression: the basics; 4. Linear regression: before and after fitting the model; 5. Logistic regression; 6. Generalized linear models; Part I. B. Working with Regression Inferences: 7. Simulation of probability models and statistical inferences; 8. Simulation for checking statistical procedures and model fits; 9. Causal inference using regression on the treatment variable; 10. Causal inference using more advanced models; Part II. A. Multilevel Regression: 11. Multilevel structures; 12. Multilevel linear models: the basics; 13. Multilevel linear models: varying slopes, non-nested models and other complexities; 14. Multilevel logistic regression; 15. Multilevel generalized linear models; Part II. B. Fitting Multilevel Models: 16. Multilevel modeling in bugs and R: the basics; 17. Fitting multilevel linear and generalized linear models in bugs and R; 18. Likelihood and Bayesian inference and computation; 19. Debugging and speeding convergence; Part III. From Data Collection to Model Understanding to Model Checking: 20. Sample size and power calculations; 21. Understanding and summarizing the fitted models; 22. Analysis of variance; 23. Causal inference using multilevel models; 24. Model checking and comparison; 25. Missing data imputation; Appendixes: A. Six quick tips to improve your regression modeling; B. Statistical graphics for research and presentation; C. Software; References.
Details
Erscheinungsjahr: 2019
Genre: Soziologie
Rubrik: Wissenschaften
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9780521686891
ISBN-10: 052168689X
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Gelman, Andrew
Hill, Jennifer
Hersteller: Cambridge University Press
Maße: 254 x 178 x 35 mm
Von/Mit: Andrew Gelman (u. a.)
Erscheinungsdatum: 06.03.2019
Gewicht: 1,199 kg
Artikel-ID: 102064319
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte