Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
46,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 4-7 Werktage
Kategorien:
Beschreibung
Classical vector analysis deals with vector fields; the gradient, divergence, and curl operators; line, surface, and volume integrals; and the integral theorems of Gauss, Stokes, and Green. Modern vector analysis distills these into the Cartan calculus and a general form of Stokes' theorem. This essentially modern text carefully develops vector analysis on manifolds and reinterprets it from the classical viewpoint (and with the classical notation) for three-dimensional Euclidean space, then goes on to introduce de Rham cohomology and Hodge theory. The material is accessible to an undergraduate student with calculus, linear algebra, and some topology as prerequisites. The many figures, exercises with detailed hints, and tests with answers make this book particularly suitable for anyone studying the subject independently.
Classical vector analysis deals with vector fields; the gradient, divergence, and curl operators; line, surface, and volume integrals; and the integral theorems of Gauss, Stokes, and Green. Modern vector analysis distills these into the Cartan calculus and a general form of Stokes' theorem. This essentially modern text carefully develops vector analysis on manifolds and reinterprets it from the classical viewpoint (and with the classical notation) for three-dimensional Euclidean space, then goes on to introduce de Rham cohomology and Hodge theory. The material is accessible to an undergraduate student with calculus, linear algebra, and some topology as prerequisites. The many figures, exercises with detailed hints, and tests with answers make this book particularly suitable for anyone studying the subject independently.
Zusammenfassung
Classical vector analysis deals with vector fields; the gradient, divergence, and curl operators; line, surface, and volume integrals; and the integral theorems of Gauss, Stokes, and Green. Modern vector analysis distills these into the Cartan calculus and a general form of Stokes's theorem. This essentially modern text carefully develops vector analysis on manifolds and reinterprets it from the classical viewpoint (and with the classical notation) for three-dimensional Euclidean space, then goes on to introduce de Rham cohomology and Hodge theory. The material is accessible to an undergraduate student with calculus, linear algebra, and some topology as prerequisites. The many figures, exercises with detailed hints, and tests with answers make this book particularly suitable for anyone studying the subject independently.
Inhaltsverzeichnis
* Differentiable manifolds * Tangent vector space * Differential forms * Orientability * Integration on manifolds * Open manifolds * The intuitive meaning of Stoke's theorem * The hat product and the definition of Cartan's derivative * Stoke's theorem * Classical vector analysis * De Rham cohomology * Differential forms on Riemannian manifolds * Calculating in coordinates * Answers * References * Index
Details
Erscheinungsjahr: | 2010 |
---|---|
Fachbereich: | Geometrie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xiv
284 S. 114 s/w Illustr. |
ISBN-13: | 9781441931443 |
ISBN-10: | 1441931449 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Jänich, Klaus |
Übersetzung: | Kay, L. |
Auflage: | Softcover reprint of hardcover 1st edition 2001 |
Hersteller: |
Springer US
Springer New York |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 254 x 178 x 17 mm |
Von/Mit: | Klaus Jänich |
Erscheinungsdatum: | 01.12.2010 |
Gewicht: | 0,569 kg |
Zusammenfassung
Classical vector analysis deals with vector fields; the gradient, divergence, and curl operators; line, surface, and volume integrals; and the integral theorems of Gauss, Stokes, and Green. Modern vector analysis distills these into the Cartan calculus and a general form of Stokes's theorem. This essentially modern text carefully develops vector analysis on manifolds and reinterprets it from the classical viewpoint (and with the classical notation) for three-dimensional Euclidean space, then goes on to introduce de Rham cohomology and Hodge theory. The material is accessible to an undergraduate student with calculus, linear algebra, and some topology as prerequisites. The many figures, exercises with detailed hints, and tests with answers make this book particularly suitable for anyone studying the subject independently.
Inhaltsverzeichnis
* Differentiable manifolds * Tangent vector space * Differential forms * Orientability * Integration on manifolds * Open manifolds * The intuitive meaning of Stoke's theorem * The hat product and the definition of Cartan's derivative * Stoke's theorem * Classical vector analysis * De Rham cohomology * Differential forms on Riemannian manifolds * Calculating in coordinates * Answers * References * Index
Details
Erscheinungsjahr: | 2010 |
---|---|
Fachbereich: | Geometrie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xiv
284 S. 114 s/w Illustr. |
ISBN-13: | 9781441931443 |
ISBN-10: | 1441931449 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Jänich, Klaus |
Übersetzung: | Kay, L. |
Auflage: | Softcover reprint of hardcover 1st edition 2001 |
Hersteller: |
Springer US
Springer New York |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 254 x 178 x 17 mm |
Von/Mit: | Klaus Jänich |
Erscheinungsdatum: | 01.12.2010 |
Gewicht: | 0,569 kg |
Sicherheitshinweis