Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Sub-Riemannian Geometry
Taschenbuch von Jean-Jaques Risler (u. a.)
Sprache: Englisch

91,40 €*

-15 % UVP 106,99 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely:
¿ control theory ¿ classical mechanics ¿ Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) ¿ diffusion on manifolds ¿ analysis of hypoelliptic operators ¿ Cauchy-Riemann (or CR) geometry.
Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics.
This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists:
¿ André Bellaïche: The tangent space in sub-Riemannian geometry ¿ Mikhael Gromov: Carnot-Carathéodory spaces seen from within ¿ Richard Montgomery: Survey of singular geodesics ¿ Héctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers ¿ Jean-Michel Coron: Stabilization of controllable systems
Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely:
¿ control theory ¿ classical mechanics ¿ Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) ¿ diffusion on manifolds ¿ analysis of hypoelliptic operators ¿ Cauchy-Riemann (or CR) geometry.
Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics.
This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists:
¿ André Bellaïche: The tangent space in sub-Riemannian geometry ¿ Mikhael Gromov: Carnot-Carathéodory spaces seen from within ¿ Richard Montgomery: Survey of singular geodesics ¿ Héctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers ¿ Jean-Michel Coron: Stabilization of controllable systems
Inhaltsverzeichnis
The tangent space in sub-Riemannian geometry.- § 1. Sub-Riemannian manifolds.- § 2. Accessibility.- § 3. Two examples.- § 4. Privileged coordinates.- § 5. The tangent nilpotent Lie algebra and the algebraic structure of the tangent space.- § 6. Gromov's notion of tangent space.- § 7. Distance estimates and the metric tangent space.- § 8. Why is the tangent space a group?.- References.- Carnot-Carathéodory spaces seen from within.- § 0. Basic definitions, examples and problems.- § 1. Horizontal curves and small C-C balls.- § 2. Hypersurfaces in C-C spaces.- § 3. Carnot-Carathéodory geometry of contact manifolds.- § 4. Pfaffian geometry in the internal light.- § 5. Anisotropic connections.- References.- Survey of singular geodesics.- § 1. Introduction.- § 2. The example and its properties.- § 3. Some open questions.- § 4. Note in proof.- References.- A cornucopia of four-dimensional abnormal sub-Riemannian minimizers.- § 1. Introduction.- § 2. Sub-Riemannian manifolds and abnormal extremals.- § 3. Abnormal extremals in dimension 4.- § 4. Optimality.- § 5. An optimality lemma.- § 6. End of the proof.- § 7. Strict abnormality.- § 8. Conclusion.- References.- Stabilization of controllable systems.- § 0. Introduction.- § 1. Local controllability.- § 2. Sufficient conditions for local stabilizability of locally controllable systems by means of stationary feedback laws.- § 3. Necessary conditions for local stabilizability by means of stationary feedback laws.- § 4. Stabilization by means of time-varying feedback laws.- § 5. Return method and controllability.- References.
Details
Erscheinungsjahr: 2011
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: viii
398 S.
ISBN-13: 9783034899468
ISBN-10: 3034899467
Sprache: Englisch
Einband: Kartoniert / Broschiert
Redaktion: Risler, Jean-Jaques
Bellaiche, Andre
Herausgeber: Andre Bellaiche/Jean-Jaques Risler
Auflage: Softcover reprint of the original 1st edition 1996
Hersteller: Birkhäuser Basel
Springer Basel AG
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 235 x 155 x 23 mm
Von/Mit: Jean-Jaques Risler (u. a.)
Erscheinungsdatum: 18.10.2011
Gewicht: 0,616 kg
Artikel-ID: 106367761
Inhaltsverzeichnis
The tangent space in sub-Riemannian geometry.- § 1. Sub-Riemannian manifolds.- § 2. Accessibility.- § 3. Two examples.- § 4. Privileged coordinates.- § 5. The tangent nilpotent Lie algebra and the algebraic structure of the tangent space.- § 6. Gromov's notion of tangent space.- § 7. Distance estimates and the metric tangent space.- § 8. Why is the tangent space a group?.- References.- Carnot-Carathéodory spaces seen from within.- § 0. Basic definitions, examples and problems.- § 1. Horizontal curves and small C-C balls.- § 2. Hypersurfaces in C-C spaces.- § 3. Carnot-Carathéodory geometry of contact manifolds.- § 4. Pfaffian geometry in the internal light.- § 5. Anisotropic connections.- References.- Survey of singular geodesics.- § 1. Introduction.- § 2. The example and its properties.- § 3. Some open questions.- § 4. Note in proof.- References.- A cornucopia of four-dimensional abnormal sub-Riemannian minimizers.- § 1. Introduction.- § 2. Sub-Riemannian manifolds and abnormal extremals.- § 3. Abnormal extremals in dimension 4.- § 4. Optimality.- § 5. An optimality lemma.- § 6. End of the proof.- § 7. Strict abnormality.- § 8. Conclusion.- References.- Stabilization of controllable systems.- § 0. Introduction.- § 1. Local controllability.- § 2. Sufficient conditions for local stabilizability of locally controllable systems by means of stationary feedback laws.- § 3. Necessary conditions for local stabilizability by means of stationary feedback laws.- § 4. Stabilization by means of time-varying feedback laws.- § 5. Return method and controllability.- References.
Details
Erscheinungsjahr: 2011
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: viii
398 S.
ISBN-13: 9783034899468
ISBN-10: 3034899467
Sprache: Englisch
Einband: Kartoniert / Broschiert
Redaktion: Risler, Jean-Jaques
Bellaiche, Andre
Herausgeber: Andre Bellaiche/Jean-Jaques Risler
Auflage: Softcover reprint of the original 1st edition 1996
Hersteller: Birkhäuser Basel
Springer Basel AG
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 235 x 155 x 23 mm
Von/Mit: Jean-Jaques Risler (u. a.)
Erscheinungsdatum: 18.10.2011
Gewicht: 0,616 kg
Artikel-ID: 106367761
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte