Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Rigid Cohomology over Laurent Series Fields
Buch von Ambrus Pál (u. a.)
Sprache: Englisch

117,69 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed.
The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields.

Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject.
In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed.
The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields.

Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject.
Zusammenfassung

Presents a new cohomology theory for varieties over local function fields, taking values in the category of overconvergent (f,?)-modules

Introduces coefficient objects for this newly developed cohomology theory, providing a bridge between the local and global pictures

Proves a p-adic weight monodromy conjecture in equicharacteristic p

Includes supplementary material: [...]

Inhaltsverzeichnis
Introduction.- First definitions and basic properties.- Finiteness with coefficients via a local monodromy theorem.- The overconvergent site, descent, and cohomology with compact support.- Absolute coefficients and arithmetic applications.- Rigid cohomology.- Adic spaces and rigid spaces.- Cohomological descent.- Index
Details
Erscheinungsjahr: 2016
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Algebra and Applications
Inhalt: x
267 S.
ISBN-13: 9783319309507
ISBN-10: 3319309501
Sprache: Englisch
Herstellernummer: 978-3-319-30950-7
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Pál, Ambrus
Lazda, Christopher
Auflage: 1st ed. 2016
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Algebra and Applications
Maße: 241 x 160 x 21 mm
Von/Mit: Ambrus Pál (u. a.)
Erscheinungsdatum: 09.05.2016
Gewicht: 0,588 kg
Artikel-ID: 103979167
Zusammenfassung

Presents a new cohomology theory for varieties over local function fields, taking values in the category of overconvergent (f,?)-modules

Introduces coefficient objects for this newly developed cohomology theory, providing a bridge between the local and global pictures

Proves a p-adic weight monodromy conjecture in equicharacteristic p

Includes supplementary material: [...]

Inhaltsverzeichnis
Introduction.- First definitions and basic properties.- Finiteness with coefficients via a local monodromy theorem.- The overconvergent site, descent, and cohomology with compact support.- Absolute coefficients and arithmetic applications.- Rigid cohomology.- Adic spaces and rigid spaces.- Cohomological descent.- Index
Details
Erscheinungsjahr: 2016
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Algebra and Applications
Inhalt: x
267 S.
ISBN-13: 9783319309507
ISBN-10: 3319309501
Sprache: Englisch
Herstellernummer: 978-3-319-30950-7
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Pál, Ambrus
Lazda, Christopher
Auflage: 1st ed. 2016
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Algebra and Applications
Maße: 241 x 160 x 21 mm
Von/Mit: Ambrus Pál (u. a.)
Erscheinungsdatum: 09.05.2016
Gewicht: 0,588 kg
Artikel-ID: 103979167
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte