117,69 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields.
Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject.
The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields.
Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject.
Presents a new cohomology theory for varieties over local function fields, taking values in the category of overconvergent (f,?)-modules
Introduces coefficient objects for this newly developed cohomology theory, providing a bridge between the local and global pictures
Proves a p-adic weight monodromy conjecture in equicharacteristic p
Includes supplementary material: [...]
Erscheinungsjahr: | 2016 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Algebra and Applications |
Inhalt: |
x
267 S. |
ISBN-13: | 9783319309507 |
ISBN-10: | 3319309501 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-30950-7 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: |
Pál, Ambrus
Lazda, Christopher |
Auflage: | 1st ed. 2016 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing Springer International Publishing AG Algebra and Applications |
Maße: | 241 x 160 x 21 mm |
Von/Mit: | Ambrus Pál (u. a.) |
Erscheinungsdatum: | 09.05.2016 |
Gewicht: | 0,588 kg |
Presents a new cohomology theory for varieties over local function fields, taking values in the category of overconvergent (f,?)-modules
Introduces coefficient objects for this newly developed cohomology theory, providing a bridge between the local and global pictures
Proves a p-adic weight monodromy conjecture in equicharacteristic p
Includes supplementary material: [...]
Erscheinungsjahr: | 2016 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Algebra and Applications |
Inhalt: |
x
267 S. |
ISBN-13: | 9783319309507 |
ISBN-10: | 3319309501 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-30950-7 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Autor: |
Pál, Ambrus
Lazda, Christopher |
Auflage: | 1st ed. 2016 |
Hersteller: |
Springer Nature Switzerland
Springer International Publishing Springer International Publishing AG Algebra and Applications |
Maße: | 241 x 160 x 21 mm |
Von/Mit: | Ambrus Pál (u. a.) |
Erscheinungsdatum: | 09.05.2016 |
Gewicht: | 0,588 kg |