Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Euclidean Geometry and its Subgeometries
Buch von Edward John Specht (u. a.)
Sprache: Englisch

160,49 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties.
There are over 300 exercises; solutions to many of these, including all that are needed for this development, are available online at the homepage for the book at [...] Supplementary material is available online covering construction of complex numbers, arc length, the circular functions, angle measure, and the polygonal form of the Jordan Curve theorem.
Euclidean Geometry and Its Subgeometries is intended for advanced students and mature mathematicians, but the proofs are thoroughly worked out to make it accessible to undergraduate students as well. It can be regarded as a completion, updating, and expansion of Hilbert's work, filling a gap in the existing literature.
In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties.
There are over 300 exercises; solutions to many of these, including all that are needed for this development, are available online at the homepage for the book at [...] Supplementary material is available online covering construction of complex numbers, arc length, the circular functions, angle measure, and the polygonal form of the Jordan Curve theorem.
Euclidean Geometry and Its Subgeometries is intended for advanced students and mature mathematicians, but the proofs are thoroughly worked out to make it accessible to undergraduate students as well. It can be regarded as a completion, updating, and expansion of Hilbert's work, filling a gap in the existing literature.
Zusammenfassung

Provides a complete and rigorous axiomatic treatment of Euclidean geometry.

Proofs for many theorems are worked out in detail.

Takes a modern approach by replacing congruence axioms with a transformational definition of congruence

Includes supplementary material: [...]

Inhaltsverzeichnis
Preface.- ¿Preliminaries and Incidence Geometry (I).- Affine Geometry: Incidence with Parallelism (IP).- Collineations of an Affine Plane (CAP).- Incidence and Betweenness (IB).- Pasch Geometry (PSH).- Ordering a Line in the Pasch Plane (ORD).- Collineations Preserving Betweenness (COBE).- Neutral Geometry (NEUT).- Free Segments of a Neutral Plane (FSEG).- Rotations about a Point of a Neutral Plane (ROT).- Euclidean Geometry Basics (EUC).- Isometries of a Euclidean Plane (ISM).- Dilations of a Euclidean Plane (DLN).- Every Line in a Euclidean Plane is an Ordered Field (OF).- Similarity on a Euclidean Plane (SIM).- Axial Affinities of a Euclidean Plane (AX).- Rational Points on a Line (QX).- A Line as Real Numbers (REAL); Coordinatization of a Plane (RR).- Belineations on a Euclidean/LUB Plane (AA).- Ratios of Sensed Segments (RS).- Consistency and Independence of Axioms; Other Matters Involving Models.- References.- Index.
Details
Erscheinungsjahr: 2016
Fachbereich: Geometrie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xix
527 S.
59 s/w Illustr.
527 p. 59 illus.
ISBN-13: 9783319237749
ISBN-10: 3319237748
Sprache: Englisch
Herstellernummer: 978-3-319-23774-9
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Specht, Edward John
Rhoads, Donald H.
Calkins, Keith G.
Jones, Harold Trainer
Auflage: 1st ed. 2015
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Maße: 241 x 160 x 35 mm
Von/Mit: Edward John Specht (u. a.)
Erscheinungsdatum: 12.01.2016
Gewicht: 0,98 kg
Artikel-ID: 104365969
Zusammenfassung

Provides a complete and rigorous axiomatic treatment of Euclidean geometry.

Proofs for many theorems are worked out in detail.

Takes a modern approach by replacing congruence axioms with a transformational definition of congruence

Includes supplementary material: [...]

Inhaltsverzeichnis
Preface.- ¿Preliminaries and Incidence Geometry (I).- Affine Geometry: Incidence with Parallelism (IP).- Collineations of an Affine Plane (CAP).- Incidence and Betweenness (IB).- Pasch Geometry (PSH).- Ordering a Line in the Pasch Plane (ORD).- Collineations Preserving Betweenness (COBE).- Neutral Geometry (NEUT).- Free Segments of a Neutral Plane (FSEG).- Rotations about a Point of a Neutral Plane (ROT).- Euclidean Geometry Basics (EUC).- Isometries of a Euclidean Plane (ISM).- Dilations of a Euclidean Plane (DLN).- Every Line in a Euclidean Plane is an Ordered Field (OF).- Similarity on a Euclidean Plane (SIM).- Axial Affinities of a Euclidean Plane (AX).- Rational Points on a Line (QX).- A Line as Real Numbers (REAL); Coordinatization of a Plane (RR).- Belineations on a Euclidean/LUB Plane (AA).- Ratios of Sensed Segments (RS).- Consistency and Independence of Axioms; Other Matters Involving Models.- References.- Index.
Details
Erscheinungsjahr: 2016
Fachbereich: Geometrie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xix
527 S.
59 s/w Illustr.
527 p. 59 illus.
ISBN-13: 9783319237749
ISBN-10: 3319237748
Sprache: Englisch
Herstellernummer: 978-3-319-23774-9
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Specht, Edward John
Rhoads, Donald H.
Calkins, Keith G.
Jones, Harold Trainer
Auflage: 1st ed. 2015
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Maße: 241 x 160 x 35 mm
Von/Mit: Edward John Specht (u. a.)
Erscheinungsdatum: 12.01.2016
Gewicht: 0,98 kg
Artikel-ID: 104365969
Warnhinweis