Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
16,99 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
Sie ist nicht beliebt und manchmal schwer zu verstehen: die Lineare Algebra. Aber keine Sorge: Thoralf Räsch hat ein kompaktes und verständliches Buch geschrieben, das Ihnen hilft, die Grundlagen der Linearen Algebra zu verstehen. Er erklärt Ihnen, was Sie über die algebraischen Grundlagen, Vektorräume, Lineare Gleichungssysteme und Matrizen wissen sollten. Auch die komplexen Zahlen kommen nicht zu kurz. Übungsaufgaben und Lösungen helfen Ihnen, Ihr Wissen zu festigen und zu überprüfen. So hilft Ihnen dieses Buch beim Grundverständnis der Linearen Algebra, wenn es einmal schnell gehen soll.
Sie ist nicht beliebt und manchmal schwer zu verstehen: die Lineare Algebra. Aber keine Sorge: Thoralf Räsch hat ein kompaktes und verständliches Buch geschrieben, das Ihnen hilft, die Grundlagen der Linearen Algebra zu verstehen. Er erklärt Ihnen, was Sie über die algebraischen Grundlagen, Vektorräume, Lineare Gleichungssysteme und Matrizen wissen sollten. Auch die komplexen Zahlen kommen nicht zu kurz. Übungsaufgaben und Lösungen helfen Ihnen, Ihr Wissen zu festigen und zu überprüfen. So hilft Ihnen dieses Buch beim Grundverständnis der Linearen Algebra, wenn es einmal schnell gehen soll.
Inhaltsverzeichnis
Inhaltsverzeichnis
Einstiegstest 1
Über den Autor 9
Danksagung 9
Inhaltsverzeichnis 11
Einleitung 17
Was Sie schon immer über lineare Algebra wissen wollten 17
Meine Leser 17
Ziel des Buches 18
Nötiges Vorwissen 19
Jenseits dieses Buches 19
Was bedeutet was 19
Nur Mut zum Stolpern 20
1 Algebraische Grundlagen der Zahlensysteme 23
Mathematik und die natürlichen Zahlen 23
Eigenschaften der Grundrechenarten 26
Von den natürlichen zu den ganzen Zahlen 27
Mathematiker und ihre Konstruktion der ganzen Zahlen 29
Aufgaben mit Klammern richtig lösen 30
Aus ganz wird rational - Bruchrechnung mal anders 30
Mathematiker und ihre Definition der rationalen Zahlen 32
Rationale Zahlen und Dezimalbrüche 33
Und plötzlich wird s irrational ... und doch real! 35
Mathematiker und die Konstruktion der reellen Zahlen 36
Keine Angst vor dem Rechnen mit Variablen 37
Das Summenzeichen 38
Notwendige und hinreichende Bedingungen 39
Grundlegende Begriffe über allgemeine Funktionen 40
2 Logische Grundlagen der Sprache, Mengen
und Beweistechniken 45
Alles über Mengen 45
Alles, nichts, oder? - Spezielle Mengen 47
Von Zahlen, Mengen und Intervallen 49
Mit Mengen einfach rechnen können 49
Mengengleichheit 50
Durchschnitt und Vereinigung von Mengen 50
Mengendifferenz und Komplementbildung 51
Kreuzprodukt von Mengen 52
Venn-Diagramme 53
Logische Verküpfungen kompetent anwenden können 55
Wahre und falsche Aussagen 56
Aussagen verknüpfen 56
Die Mathematik als Sprache erkennen 58
Terme als Worte im mathematischen Satz 59
Formeln sind die Sätze der mathematischen Sprache 59
Mit Quantoren neue Formeln bilden 61
Die Unendlichkeit - unzählige Welten? 63
Jenseits der Zählbarkeit - überabzählbare Mengen 65
Grundlegende Beweistechniken in der Mathematik 66
Methode 1: Direkter Beweis 67
Methode 2: Indirekter Beweis 67
Methode 3: Beweis durch Fallunterscheidung 69
Methode 4: Beweis durch vollständige Induktion 70
3 Lineare Gleichungssysteme Schritt für Schritt analysieren 75
Gleichungen in verschiedenen Formen und Größen 75
Lineare Gleichungen in einer Unbekannten 76
Quadratische Gleichungen in einer Unbekannten 77
Lineare Gleichungssysteme unter die Lupe genommen 78
Gleichungssyteme in Diagonalgestalt 80
Die nützliche Zeilenstufenform 81
Der legendäre Gauß-Algorithmus 83
4 Vektorräume - mehr als eine Welt der Pfeile 89
Der Raum n 89
Praxisbeispiel: Kräfte an einem Ausleger berechnen 95
Schöne Teilmengen: Untervektorräume 97
5 Punkte, Geraden und Ebenen im
dreidimensionalen Raum 105
Punkte, Geraden und Ebenen im dreidimensionalen Raum 105
Punkte im Raum 105
Parametergleichung für Geraden 107
Zweipunktegleichung für Geraden 108
Parametergleichung für Ebenen 110
Dreipunktegleichung für Ebenen 111
Koordinatengleichung für Ebenen 112
Umrechnungen der einzelnen Ebenengleichungen 112
Lagebeziehungen zwischen Geraden und Ebenen 115
Lagebeziehungen zwischen zwei Geraden 115
Lagebeziehungen zwischen zwei Ebenen 118
Lagebeziehungen zwischen Gerade und Ebene 121
Kollision während einer Flugshow in Las Vegas? 124
6 Rechnen in Gruppen, Ringen und Körpern 129
Grundlegende Strukturen: Gruppen 132
In Ringen mit zwei Operationen rechnen 134
Teilbarkeit und das Rechnen mit Restklassen 138
Rechnen mit Restklassen im Alltag 143
7 Keine Angst vor komplexen Zahlen 147
Definition der komplexen Zahlen 147
Komplexe Zahlen addieren und multiplizieren 149
Division komplexer Zahlen in der Praxis 149
Komplexe quadratische Gleichungen 151
Komplexe Zahlen als reelle Ebene 152
Komplexe Zahlen als Polarkoordinaten 154
Kurzer Ausblick auf die Anwendungen dieser Zahlen 158
Jenseits der komplexen Zahlen: Quaternionen und Oktonionen 158
8 Überlebenstechniken in Vektorräumen 161
Linearkombinatio
Einstiegstest 1
Über den Autor 9
Danksagung 9
Inhaltsverzeichnis 11
Einleitung 17
Was Sie schon immer über lineare Algebra wissen wollten 17
Meine Leser 17
Ziel des Buches 18
Nötiges Vorwissen 19
Jenseits dieses Buches 19
Was bedeutet was 19
Nur Mut zum Stolpern 20
1 Algebraische Grundlagen der Zahlensysteme 23
Mathematik und die natürlichen Zahlen 23
Eigenschaften der Grundrechenarten 26
Von den natürlichen zu den ganzen Zahlen 27
Mathematiker und ihre Konstruktion der ganzen Zahlen 29
Aufgaben mit Klammern richtig lösen 30
Aus ganz wird rational - Bruchrechnung mal anders 30
Mathematiker und ihre Definition der rationalen Zahlen 32
Rationale Zahlen und Dezimalbrüche 33
Und plötzlich wird s irrational ... und doch real! 35
Mathematiker und die Konstruktion der reellen Zahlen 36
Keine Angst vor dem Rechnen mit Variablen 37
Das Summenzeichen 38
Notwendige und hinreichende Bedingungen 39
Grundlegende Begriffe über allgemeine Funktionen 40
2 Logische Grundlagen der Sprache, Mengen
und Beweistechniken 45
Alles über Mengen 45
Alles, nichts, oder? - Spezielle Mengen 47
Von Zahlen, Mengen und Intervallen 49
Mit Mengen einfach rechnen können 49
Mengengleichheit 50
Durchschnitt und Vereinigung von Mengen 50
Mengendifferenz und Komplementbildung 51
Kreuzprodukt von Mengen 52
Venn-Diagramme 53
Logische Verküpfungen kompetent anwenden können 55
Wahre und falsche Aussagen 56
Aussagen verknüpfen 56
Die Mathematik als Sprache erkennen 58
Terme als Worte im mathematischen Satz 59
Formeln sind die Sätze der mathematischen Sprache 59
Mit Quantoren neue Formeln bilden 61
Die Unendlichkeit - unzählige Welten? 63
Jenseits der Zählbarkeit - überabzählbare Mengen 65
Grundlegende Beweistechniken in der Mathematik 66
Methode 1: Direkter Beweis 67
Methode 2: Indirekter Beweis 67
Methode 3: Beweis durch Fallunterscheidung 69
Methode 4: Beweis durch vollständige Induktion 70
3 Lineare Gleichungssysteme Schritt für Schritt analysieren 75
Gleichungen in verschiedenen Formen und Größen 75
Lineare Gleichungen in einer Unbekannten 76
Quadratische Gleichungen in einer Unbekannten 77
Lineare Gleichungssysteme unter die Lupe genommen 78
Gleichungssyteme in Diagonalgestalt 80
Die nützliche Zeilenstufenform 81
Der legendäre Gauß-Algorithmus 83
4 Vektorräume - mehr als eine Welt der Pfeile 89
Der Raum n 89
Praxisbeispiel: Kräfte an einem Ausleger berechnen 95
Schöne Teilmengen: Untervektorräume 97
5 Punkte, Geraden und Ebenen im
dreidimensionalen Raum 105
Punkte, Geraden und Ebenen im dreidimensionalen Raum 105
Punkte im Raum 105
Parametergleichung für Geraden 107
Zweipunktegleichung für Geraden 108
Parametergleichung für Ebenen 110
Dreipunktegleichung für Ebenen 111
Koordinatengleichung für Ebenen 112
Umrechnungen der einzelnen Ebenengleichungen 112
Lagebeziehungen zwischen Geraden und Ebenen 115
Lagebeziehungen zwischen zwei Geraden 115
Lagebeziehungen zwischen zwei Ebenen 118
Lagebeziehungen zwischen Gerade und Ebene 121
Kollision während einer Flugshow in Las Vegas? 124
6 Rechnen in Gruppen, Ringen und Körpern 129
Grundlegende Strukturen: Gruppen 132
In Ringen mit zwei Operationen rechnen 134
Teilbarkeit und das Rechnen mit Restklassen 138
Rechnen mit Restklassen im Alltag 143
7 Keine Angst vor komplexen Zahlen 147
Definition der komplexen Zahlen 147
Komplexe Zahlen addieren und multiplizieren 149
Division komplexer Zahlen in der Praxis 149
Komplexe quadratische Gleichungen 151
Komplexe Zahlen als reelle Ebene 152
Komplexe Zahlen als Polarkoordinaten 154
Kurzer Ausblick auf die Anwendungen dieser Zahlen 158
Jenseits der komplexen Zahlen: Quaternionen und Oktonionen 158
8 Überlebenstechniken in Vektorräumen 161
Linearkombinatio
Details
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Titelzusatz: | Die Grundlagen auf einen Blick. Von Linearen Gleichungssystemen bis zur Matrizenrechnung. Schnelltest: Mit Übungsaufgaben und Lösungen |
Inhalt: | 267 S. |
ISBN-13: | 9783527530090 |
ISBN-10: | 3527530096 |
Sprache: | Deutsch |
Herstellernummer: | 1153009 000 |
Autor: | Räsch, Thoralf |
Auflage: | 1. Auflage |
Hersteller: | Wiley-VCH |
Maße: | 212 x 150 x 15 mm |
Von/Mit: | Thoralf Räsch |
Erscheinungsdatum: | 14.01.2015 |
Gewicht: | 0,353 kg |
Inhaltsverzeichnis
Inhaltsverzeichnis
Einstiegstest 1
Über den Autor 9
Danksagung 9
Inhaltsverzeichnis 11
Einleitung 17
Was Sie schon immer über lineare Algebra wissen wollten 17
Meine Leser 17
Ziel des Buches 18
Nötiges Vorwissen 19
Jenseits dieses Buches 19
Was bedeutet was 19
Nur Mut zum Stolpern 20
1 Algebraische Grundlagen der Zahlensysteme 23
Mathematik und die natürlichen Zahlen 23
Eigenschaften der Grundrechenarten 26
Von den natürlichen zu den ganzen Zahlen 27
Mathematiker und ihre Konstruktion der ganzen Zahlen 29
Aufgaben mit Klammern richtig lösen 30
Aus ganz wird rational - Bruchrechnung mal anders 30
Mathematiker und ihre Definition der rationalen Zahlen 32
Rationale Zahlen und Dezimalbrüche 33
Und plötzlich wird s irrational ... und doch real! 35
Mathematiker und die Konstruktion der reellen Zahlen 36
Keine Angst vor dem Rechnen mit Variablen 37
Das Summenzeichen 38
Notwendige und hinreichende Bedingungen 39
Grundlegende Begriffe über allgemeine Funktionen 40
2 Logische Grundlagen der Sprache, Mengen
und Beweistechniken 45
Alles über Mengen 45
Alles, nichts, oder? - Spezielle Mengen 47
Von Zahlen, Mengen und Intervallen 49
Mit Mengen einfach rechnen können 49
Mengengleichheit 50
Durchschnitt und Vereinigung von Mengen 50
Mengendifferenz und Komplementbildung 51
Kreuzprodukt von Mengen 52
Venn-Diagramme 53
Logische Verküpfungen kompetent anwenden können 55
Wahre und falsche Aussagen 56
Aussagen verknüpfen 56
Die Mathematik als Sprache erkennen 58
Terme als Worte im mathematischen Satz 59
Formeln sind die Sätze der mathematischen Sprache 59
Mit Quantoren neue Formeln bilden 61
Die Unendlichkeit - unzählige Welten? 63
Jenseits der Zählbarkeit - überabzählbare Mengen 65
Grundlegende Beweistechniken in der Mathematik 66
Methode 1: Direkter Beweis 67
Methode 2: Indirekter Beweis 67
Methode 3: Beweis durch Fallunterscheidung 69
Methode 4: Beweis durch vollständige Induktion 70
3 Lineare Gleichungssysteme Schritt für Schritt analysieren 75
Gleichungen in verschiedenen Formen und Größen 75
Lineare Gleichungen in einer Unbekannten 76
Quadratische Gleichungen in einer Unbekannten 77
Lineare Gleichungssysteme unter die Lupe genommen 78
Gleichungssyteme in Diagonalgestalt 80
Die nützliche Zeilenstufenform 81
Der legendäre Gauß-Algorithmus 83
4 Vektorräume - mehr als eine Welt der Pfeile 89
Der Raum n 89
Praxisbeispiel: Kräfte an einem Ausleger berechnen 95
Schöne Teilmengen: Untervektorräume 97
5 Punkte, Geraden und Ebenen im
dreidimensionalen Raum 105
Punkte, Geraden und Ebenen im dreidimensionalen Raum 105
Punkte im Raum 105
Parametergleichung für Geraden 107
Zweipunktegleichung für Geraden 108
Parametergleichung für Ebenen 110
Dreipunktegleichung für Ebenen 111
Koordinatengleichung für Ebenen 112
Umrechnungen der einzelnen Ebenengleichungen 112
Lagebeziehungen zwischen Geraden und Ebenen 115
Lagebeziehungen zwischen zwei Geraden 115
Lagebeziehungen zwischen zwei Ebenen 118
Lagebeziehungen zwischen Gerade und Ebene 121
Kollision während einer Flugshow in Las Vegas? 124
6 Rechnen in Gruppen, Ringen und Körpern 129
Grundlegende Strukturen: Gruppen 132
In Ringen mit zwei Operationen rechnen 134
Teilbarkeit und das Rechnen mit Restklassen 138
Rechnen mit Restklassen im Alltag 143
7 Keine Angst vor komplexen Zahlen 147
Definition der komplexen Zahlen 147
Komplexe Zahlen addieren und multiplizieren 149
Division komplexer Zahlen in der Praxis 149
Komplexe quadratische Gleichungen 151
Komplexe Zahlen als reelle Ebene 152
Komplexe Zahlen als Polarkoordinaten 154
Kurzer Ausblick auf die Anwendungen dieser Zahlen 158
Jenseits der komplexen Zahlen: Quaternionen und Oktonionen 158
8 Überlebenstechniken in Vektorräumen 161
Linearkombinatio
Einstiegstest 1
Über den Autor 9
Danksagung 9
Inhaltsverzeichnis 11
Einleitung 17
Was Sie schon immer über lineare Algebra wissen wollten 17
Meine Leser 17
Ziel des Buches 18
Nötiges Vorwissen 19
Jenseits dieses Buches 19
Was bedeutet was 19
Nur Mut zum Stolpern 20
1 Algebraische Grundlagen der Zahlensysteme 23
Mathematik und die natürlichen Zahlen 23
Eigenschaften der Grundrechenarten 26
Von den natürlichen zu den ganzen Zahlen 27
Mathematiker und ihre Konstruktion der ganzen Zahlen 29
Aufgaben mit Klammern richtig lösen 30
Aus ganz wird rational - Bruchrechnung mal anders 30
Mathematiker und ihre Definition der rationalen Zahlen 32
Rationale Zahlen und Dezimalbrüche 33
Und plötzlich wird s irrational ... und doch real! 35
Mathematiker und die Konstruktion der reellen Zahlen 36
Keine Angst vor dem Rechnen mit Variablen 37
Das Summenzeichen 38
Notwendige und hinreichende Bedingungen 39
Grundlegende Begriffe über allgemeine Funktionen 40
2 Logische Grundlagen der Sprache, Mengen
und Beweistechniken 45
Alles über Mengen 45
Alles, nichts, oder? - Spezielle Mengen 47
Von Zahlen, Mengen und Intervallen 49
Mit Mengen einfach rechnen können 49
Mengengleichheit 50
Durchschnitt und Vereinigung von Mengen 50
Mengendifferenz und Komplementbildung 51
Kreuzprodukt von Mengen 52
Venn-Diagramme 53
Logische Verküpfungen kompetent anwenden können 55
Wahre und falsche Aussagen 56
Aussagen verknüpfen 56
Die Mathematik als Sprache erkennen 58
Terme als Worte im mathematischen Satz 59
Formeln sind die Sätze der mathematischen Sprache 59
Mit Quantoren neue Formeln bilden 61
Die Unendlichkeit - unzählige Welten? 63
Jenseits der Zählbarkeit - überabzählbare Mengen 65
Grundlegende Beweistechniken in der Mathematik 66
Methode 1: Direkter Beweis 67
Methode 2: Indirekter Beweis 67
Methode 3: Beweis durch Fallunterscheidung 69
Methode 4: Beweis durch vollständige Induktion 70
3 Lineare Gleichungssysteme Schritt für Schritt analysieren 75
Gleichungen in verschiedenen Formen und Größen 75
Lineare Gleichungen in einer Unbekannten 76
Quadratische Gleichungen in einer Unbekannten 77
Lineare Gleichungssysteme unter die Lupe genommen 78
Gleichungssyteme in Diagonalgestalt 80
Die nützliche Zeilenstufenform 81
Der legendäre Gauß-Algorithmus 83
4 Vektorräume - mehr als eine Welt der Pfeile 89
Der Raum n 89
Praxisbeispiel: Kräfte an einem Ausleger berechnen 95
Schöne Teilmengen: Untervektorräume 97
5 Punkte, Geraden und Ebenen im
dreidimensionalen Raum 105
Punkte, Geraden und Ebenen im dreidimensionalen Raum 105
Punkte im Raum 105
Parametergleichung für Geraden 107
Zweipunktegleichung für Geraden 108
Parametergleichung für Ebenen 110
Dreipunktegleichung für Ebenen 111
Koordinatengleichung für Ebenen 112
Umrechnungen der einzelnen Ebenengleichungen 112
Lagebeziehungen zwischen Geraden und Ebenen 115
Lagebeziehungen zwischen zwei Geraden 115
Lagebeziehungen zwischen zwei Ebenen 118
Lagebeziehungen zwischen Gerade und Ebene 121
Kollision während einer Flugshow in Las Vegas? 124
6 Rechnen in Gruppen, Ringen und Körpern 129
Grundlegende Strukturen: Gruppen 132
In Ringen mit zwei Operationen rechnen 134
Teilbarkeit und das Rechnen mit Restklassen 138
Rechnen mit Restklassen im Alltag 143
7 Keine Angst vor komplexen Zahlen 147
Definition der komplexen Zahlen 147
Komplexe Zahlen addieren und multiplizieren 149
Division komplexer Zahlen in der Praxis 149
Komplexe quadratische Gleichungen 151
Komplexe Zahlen als reelle Ebene 152
Komplexe Zahlen als Polarkoordinaten 154
Kurzer Ausblick auf die Anwendungen dieser Zahlen 158
Jenseits der komplexen Zahlen: Quaternionen und Oktonionen 158
8 Überlebenstechniken in Vektorräumen 161
Linearkombinatio
Details
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Titelzusatz: | Die Grundlagen auf einen Blick. Von Linearen Gleichungssystemen bis zur Matrizenrechnung. Schnelltest: Mit Übungsaufgaben und Lösungen |
Inhalt: | 267 S. |
ISBN-13: | 9783527530090 |
ISBN-10: | 3527530096 |
Sprache: | Deutsch |
Herstellernummer: | 1153009 000 |
Autor: | Räsch, Thoralf |
Auflage: | 1. Auflage |
Hersteller: | Wiley-VCH |
Maße: | 212 x 150 x 15 mm |
Von/Mit: | Thoralf Räsch |
Erscheinungsdatum: | 14.01.2015 |
Gewicht: | 0,353 kg |
Warnhinweis