Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Label-Free Super-Resolution Microscopy
Buch von Vasily Astratov
Sprache: Englisch

155,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
This book presents the advances in super-resolution microscopy in physics and biomedical optics for nanoscale imaging. In the last decade, super-resolved fluorescence imaging has opened new horizons in improving the resolution of optical microscopes far beyond the classical diffraction limit, leading to the Nobel Prize in Chemistry in 2014. This book represents the first comprehensive review of a different type of super-resolved microscopy, which does not rely on using fluorescent markers. Such label-free super-resolution microscopy enables potentially even broader applications in life sciences and nanoscale imaging, but is much more challenging and it is based on different physical concepts and approaches. A unique feature of this book is that it combines insights into mechanisms of label-free super-resolution with a vast range of applications from fast imaging of living cells to inorganic nanostructures. This book can be used by researchers in biological and medical physics. Due to its logically organizational structure, it can be also used as a teaching tool in graduate and upper-division undergraduate-level courses devoted to super-resolved microscopy, nanoscale imaging, microscopy instrumentation, and biomedical imaging.
This book presents the advances in super-resolution microscopy in physics and biomedical optics for nanoscale imaging. In the last decade, super-resolved fluorescence imaging has opened new horizons in improving the resolution of optical microscopes far beyond the classical diffraction limit, leading to the Nobel Prize in Chemistry in 2014. This book represents the first comprehensive review of a different type of super-resolved microscopy, which does not rely on using fluorescent markers. Such label-free super-resolution microscopy enables potentially even broader applications in life sciences and nanoscale imaging, but is much more challenging and it is based on different physical concepts and approaches. A unique feature of this book is that it combines insights into mechanisms of label-free super-resolution with a vast range of applications from fast imaging of living cells to inorganic nanostructures. This book can be used by researchers in biological and medical physics. Due to its logically organizational structure, it can be also used as a teaching tool in graduate and upper-division undergraduate-level courses devoted to super-resolved microscopy, nanoscale imaging, microscopy instrumentation, and biomedical imaging.
Über den Autor
Vasily N. Astratov has been professor of Physics and Optical Science at the University of North Carolina-Charlotte since 2002. In 1986, he received his Ph.D. degree from the A.F. Ioffe Physical-Technical Institute in Russia. Since joining UNC-Charlotte in 2002, his research has been devoted to a new field of study which he has named "microspherical photonics" to describe the applications of dielectric microspheres in super-resolution microscopy, resonant light forces, photonic nanojets, and photonic molecules. In his lab, he proposed and developed the methods of super-resolution imaging based on using high-index dielectric microspheres immersed in liquids or in elastomeric slabs. His methods are widely used by many groups worldwide for imaging subcellular structures, viruses, and nanoplasmonic structures. He also observed giant light forces exerted on microspheres under resonant conditions with their whispering gallery modes. This observation builds upon earlier pioneering work of Arthur Ashkin and Joseph M. Dziedzic on optical forces exerted on microdroplets. Previously, in the mid-1990s he pioneered studies of synthetic opals as novel three-dimensional photonic crystals for visible light. He has authored and co-authored about 180 research publications and 15 patents which have been cited more than 6000 times.
Zusammenfassung

Combines the advances in super-resolution microscopy in physics and biomedical optics for nanoscale imaging

Describes label-free super-resolution microscopy

Introduces also the important topic super-resolved fluorescence microscopy

Presents the applications of label-free super-resolution imaging

Includes supplementary material: [...]

Inhaltsverzeichnis
1. Introduction (Vasily Astratov).- 2. Optical Resolution, Field Entropy, and Heisenberg's Uncertainty Relation (Gabriel Popescu).- 3. Interferometric Scattering Microscopy (iSCAT) and Related Techniques (Vahid Sandoghdar).- 4. Label-Free, Ultrahigh-Speed Direct Imaging of Bio-Nanoparticles in Live Cells by Coherent Brightfield (COBRI) Microscopy (Chia-Lung Hsieh.- 5. Super-Resolution Imaging in Raman Microscopy (Katsumasa Fujita).- 6. Toward Label-Free Superresolution Microscopy (Renee Frontiera).- 7. Label-Free Time Multiplexing Based Nanoscopy (Zeev Zalevsky).- 8. Beating the Diffraction Limit in IR Microscopy Through Detecting the Thermal Effect (Ji-Xin Cheng).- 9. Superresolution Imaging Based on Nonlinear Scattering (Shi-Wei Chu).- 10. Label Free Superresolution by Nonlinear Photo-Modulated Reflectivity (Ori Cheshnovsky) .- 11. Hyper-Structured Illumination: Label-Free Super-Resolution Imaging with Hypebolic Metamaterials (Evgenii Narimanov).- 12. Superresolution MicroscopyTechniques Based on Plasmonics and Transformation Optics (. Igor Smolyaninov and Vera Smolyaninova).- 13. Superlensing Particle Lenses for White-Light Super-Resolution Imaging (Zengbo Wang and Boris Luk'yanchuk).- 14. Theoretical Foundations of Superresolution in Microspherical Nanoscopy (Alexey Maslov and Vasily Astratov).- 15. Role of Plasmonics in Super-Resolution Imaging Through Microspheres (Vasily Astratov's group at UNC-Charlotte).- 16. Plasmonics Meets Far-Field Optical Nanoscopy (Fernando Stefani (to be confirmed)).- 17. Superoscillatory Focusing Technologies and Quantum Superoscillation (Nikolay Zheludev and Edward Rogers (to be confirmed)).- 18. Perfect Imaging via Transformation Optics (Ulf Leonhardt (to be confirmed)).- 19. Focusing and Imaging from the Far Field Using Time Reversal in Subwavelength Scaled Resonant Media (Fabrice Lemoult & Geoffroy Lerosey (to be confirmed)).
Details
Erscheinungsjahr: 2019
Fachbereich: Physikalische Chemie
Genre: Chemie, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Biological and Medical Physics, Biomedical Engineering
Inhalt: xxii
487 S.
22 s/w Illustr.
222 farbige Illustr.
487 p. 244 illus.
222 illus. in color.
ISBN-13: 9783030217211
ISBN-10: 3030217213
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Redaktion: Astratov, Vasily
Herausgeber: Vasily Astratov
Auflage: 1st ed. 2019
Hersteller: Springer International Publishing
Biological and Medical Physics, Biomedical Engineering
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 32 mm
Von/Mit: Vasily Astratov
Erscheinungsdatum: 20.09.2019
Gewicht: 1,021 kg
Artikel-ID: 116531479
Über den Autor
Vasily N. Astratov has been professor of Physics and Optical Science at the University of North Carolina-Charlotte since 2002. In 1986, he received his Ph.D. degree from the A.F. Ioffe Physical-Technical Institute in Russia. Since joining UNC-Charlotte in 2002, his research has been devoted to a new field of study which he has named "microspherical photonics" to describe the applications of dielectric microspheres in super-resolution microscopy, resonant light forces, photonic nanojets, and photonic molecules. In his lab, he proposed and developed the methods of super-resolution imaging based on using high-index dielectric microspheres immersed in liquids or in elastomeric slabs. His methods are widely used by many groups worldwide for imaging subcellular structures, viruses, and nanoplasmonic structures. He also observed giant light forces exerted on microspheres under resonant conditions with their whispering gallery modes. This observation builds upon earlier pioneering work of Arthur Ashkin and Joseph M. Dziedzic on optical forces exerted on microdroplets. Previously, in the mid-1990s he pioneered studies of synthetic opals as novel three-dimensional photonic crystals for visible light. He has authored and co-authored about 180 research publications and 15 patents which have been cited more than 6000 times.
Zusammenfassung

Combines the advances in super-resolution microscopy in physics and biomedical optics for nanoscale imaging

Describes label-free super-resolution microscopy

Introduces also the important topic super-resolved fluorescence microscopy

Presents the applications of label-free super-resolution imaging

Includes supplementary material: [...]

Inhaltsverzeichnis
1. Introduction (Vasily Astratov).- 2. Optical Resolution, Field Entropy, and Heisenberg's Uncertainty Relation (Gabriel Popescu).- 3. Interferometric Scattering Microscopy (iSCAT) and Related Techniques (Vahid Sandoghdar).- 4. Label-Free, Ultrahigh-Speed Direct Imaging of Bio-Nanoparticles in Live Cells by Coherent Brightfield (COBRI) Microscopy (Chia-Lung Hsieh.- 5. Super-Resolution Imaging in Raman Microscopy (Katsumasa Fujita).- 6. Toward Label-Free Superresolution Microscopy (Renee Frontiera).- 7. Label-Free Time Multiplexing Based Nanoscopy (Zeev Zalevsky).- 8. Beating the Diffraction Limit in IR Microscopy Through Detecting the Thermal Effect (Ji-Xin Cheng).- 9. Superresolution Imaging Based on Nonlinear Scattering (Shi-Wei Chu).- 10. Label Free Superresolution by Nonlinear Photo-Modulated Reflectivity (Ori Cheshnovsky) .- 11. Hyper-Structured Illumination: Label-Free Super-Resolution Imaging with Hypebolic Metamaterials (Evgenii Narimanov).- 12. Superresolution MicroscopyTechniques Based on Plasmonics and Transformation Optics (. Igor Smolyaninov and Vera Smolyaninova).- 13. Superlensing Particle Lenses for White-Light Super-Resolution Imaging (Zengbo Wang and Boris Luk'yanchuk).- 14. Theoretical Foundations of Superresolution in Microspherical Nanoscopy (Alexey Maslov and Vasily Astratov).- 15. Role of Plasmonics in Super-Resolution Imaging Through Microspheres (Vasily Astratov's group at UNC-Charlotte).- 16. Plasmonics Meets Far-Field Optical Nanoscopy (Fernando Stefani (to be confirmed)).- 17. Superoscillatory Focusing Technologies and Quantum Superoscillation (Nikolay Zheludev and Edward Rogers (to be confirmed)).- 18. Perfect Imaging via Transformation Optics (Ulf Leonhardt (to be confirmed)).- 19. Focusing and Imaging from the Far Field Using Time Reversal in Subwavelength Scaled Resonant Media (Fabrice Lemoult & Geoffroy Lerosey (to be confirmed)).
Details
Erscheinungsjahr: 2019
Fachbereich: Physikalische Chemie
Genre: Chemie, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Biological and Medical Physics, Biomedical Engineering
Inhalt: xxii
487 S.
22 s/w Illustr.
222 farbige Illustr.
487 p. 244 illus.
222 illus. in color.
ISBN-13: 9783030217211
ISBN-10: 3030217213
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Redaktion: Astratov, Vasily
Herausgeber: Vasily Astratov
Auflage: 1st ed. 2019
Hersteller: Springer International Publishing
Biological and Medical Physics, Biomedical Engineering
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 32 mm
Von/Mit: Vasily Astratov
Erscheinungsdatum: 20.09.2019
Gewicht: 1,021 kg
Artikel-ID: 116531479
Sicherheitshinweis