Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Introduction to Stochastic Integration
Taschenbuch von Hui-Hsiung Kuo
Sprache: Englisch

69,54 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
In the Leibniz¿Newton calculus, one learns the di?erentiation and integration of deterministic functions. A basic theorem in di?erentiation is the chain rule, which gives the derivative of a composite of two di?erentiable functions. The chain rule, when written in an inde?nite integral form, yields the method of substitution. In advanced calculus, the Riemann¿Stieltjes integral is de?ned through the same procedure of ¿partition-evaluation-summation-limit¿ as in the Riemann integral. In dealing with random functions such as functions of a Brownian motion, the chain rule for the Leibniz¿Newton calculus breaks down. A Brownian motionmovessorapidlyandirregularlythatalmostallofitssamplepathsare nowhere di?erentiable. Thus we cannot di?erentiate functions of a Brownian motion in the same way as in the Leibniz¿Newton calculus. In 1944 Kiyosi It¿ o published the celebrated paper ¿Stochastic Integral¿ in the Proceedings of the Imperial Academy (Tokyo). It was the beginning of the It¿ o calculus, the counterpart of the Leibniz¿Newton calculus for random functions. In this six-page paper, It¿ o introduced the stochastic integral and a formula, known since then as It¿ ös formula. The It¿ o formula is the chain rule for the It¿ocalculus.Butitcannotbe expressed as in the Leibniz¿Newton calculus in terms of derivatives, since a Brownian motion path is nowhere di?erentiable. The It¿ o formula can be interpreted only in the integral form. Moreover, there is an additional term in the formula, called the It¿ o correction term, resulting from the nonzero quadratic variation of a Brownian motion.
In the Leibniz¿Newton calculus, one learns the di?erentiation and integration of deterministic functions. A basic theorem in di?erentiation is the chain rule, which gives the derivative of a composite of two di?erentiable functions. The chain rule, when written in an inde?nite integral form, yields the method of substitution. In advanced calculus, the Riemann¿Stieltjes integral is de?ned through the same procedure of ¿partition-evaluation-summation-limit¿ as in the Riemann integral. In dealing with random functions such as functions of a Brownian motion, the chain rule for the Leibniz¿Newton calculus breaks down. A Brownian motionmovessorapidlyandirregularlythatalmostallofitssamplepathsare nowhere di?erentiable. Thus we cannot di?erentiate functions of a Brownian motion in the same way as in the Leibniz¿Newton calculus. In 1944 Kiyosi It¿ o published the celebrated paper ¿Stochastic Integral¿ in the Proceedings of the Imperial Academy (Tokyo). It was the beginning of the It¿ o calculus, the counterpart of the Leibniz¿Newton calculus for random functions. In this six-page paper, It¿ o introduced the stochastic integral and a formula, known since then as It¿ ös formula. The It¿ o formula is the chain rule for the It¿ocalculus.Butitcannotbe expressed as in the Leibniz¿Newton calculus in terms of derivatives, since a Brownian motion path is nowhere di?erentiable. The It¿ o formula can be interpreted only in the integral form. Moreover, there is an additional term in the formula, called the It¿ o correction term, resulting from the nonzero quadratic variation of a Brownian motion.
Zusammenfassung

The theory of stochastic integration, also called the Ito calculus, has a large spectrum of applications in virtually every scientific area involving random functions. This introductory textbook on stochastic integration provides a concise introduction to the Ito calculus, and covers the constructions of Brownian motion, stochastic integrals for Brownian motion and martingales, the Ito formula, multiple Wiener-Ito integrals, stochastic differential equations, and applications to finance, filtering theory, and electric circuits.

Inhaltsverzeichnis
Brownian Motion.- Constructions of Brownian Motion.- Stochastic Integrals.- An Extension of Stochastic Integrals.- Stochastic Integrals for Martingales.- The Itô Formula.- Applications of the Itô Formula.- Multiple Wiener-Itô Integrals.- Stochastic Differential Equations.- Some Applications and Additional Topics.
Details
Erscheinungsjahr: 2005
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Universitext
Inhalt: xiii
279 S.
2 s/w Illustr.
279 p. 2 illus.
ISBN-13: 9780387287201
ISBN-10: 0387287205
Sprache: Englisch
Herstellernummer: 11335290
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Kuo, Hui-Hsiung
Hersteller: Springer New York
Springer US, New York, N.Y.
Universitext
Maße: 235 x 155 x 17 mm
Von/Mit: Hui-Hsiung Kuo
Erscheinungsdatum: 15.11.2005
Gewicht: 0,452 kg
Artikel-ID: 102236517
Zusammenfassung

The theory of stochastic integration, also called the Ito calculus, has a large spectrum of applications in virtually every scientific area involving random functions. This introductory textbook on stochastic integration provides a concise introduction to the Ito calculus, and covers the constructions of Brownian motion, stochastic integrals for Brownian motion and martingales, the Ito formula, multiple Wiener-Ito integrals, stochastic differential equations, and applications to finance, filtering theory, and electric circuits.

Inhaltsverzeichnis
Brownian Motion.- Constructions of Brownian Motion.- Stochastic Integrals.- An Extension of Stochastic Integrals.- Stochastic Integrals for Martingales.- The Itô Formula.- Applications of the Itô Formula.- Multiple Wiener-Itô Integrals.- Stochastic Differential Equations.- Some Applications and Additional Topics.
Details
Erscheinungsjahr: 2005
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Universitext
Inhalt: xiii
279 S.
2 s/w Illustr.
279 p. 2 illus.
ISBN-13: 9780387287201
ISBN-10: 0387287205
Sprache: Englisch
Herstellernummer: 11335290
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Kuo, Hui-Hsiung
Hersteller: Springer New York
Springer US, New York, N.Y.
Universitext
Maße: 235 x 155 x 17 mm
Von/Mit: Hui-Hsiung Kuo
Erscheinungsdatum: 15.11.2005
Gewicht: 0,452 kg
Artikel-ID: 102236517
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte