122,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves¿in one, two, and higher dimensions¿both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.
Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves¿in one, two, and higher dimensions¿both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.
Presents a complete and detailed exposition on statistical analysis of shapes that includes appendices, background material, and exercises, making this text a self-contained reference
Addresses and explores the next generation of shape analysis
Focuses on providing a working knowledge of a broad range of relevant material, foregoing in-depth technical details and elaborate mathematical explanations
1. Motivation for Function and Shape Analysis.- 2. Previous Techniques in Shape Analysis.- 3. Background: Relevant Tools from Geometry.- 4. Functional Data and Elastic Registration.- 5. Shapes of Planar Curves.- 6. Shapes of Planar Closed Curves.- 7. Statistical Modeling on Nonlinear Manifolds.- 8. Statistical Modeling of Functional Data.- 9. Statistical Modeling of Planar Shapes.- 10. Shapes of Curves in Higher Dimensions.- 11. Related Topics in Shape Analysis of Curves.- A. Background Material.- B. The Dynamic Programming Algorithm.- References.- Index.
Erscheinungsjahr: | 2016 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
xviii
447 S. 65 s/w Illustr. 182 farbige Illustr. 447 p. 247 illus. 182 illus. in color. |
ISBN-13: | 9781493940189 |
ISBN-10: | 149394018X |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Klassen, Eric P.
Srivastava, Anuj |
Auflage: | 1st edition 2016 |
Hersteller: |
Springer US
Springer New York |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 260 x 183 x 31 mm |
Von/Mit: | Eric P. Klassen (u. a.) |
Erscheinungsdatum: | 03.10.2016 |
Gewicht: | 1,07 kg |
Presents a complete and detailed exposition on statistical analysis of shapes that includes appendices, background material, and exercises, making this text a self-contained reference
Addresses and explores the next generation of shape analysis
Focuses on providing a working knowledge of a broad range of relevant material, foregoing in-depth technical details and elaborate mathematical explanations
1. Motivation for Function and Shape Analysis.- 2. Previous Techniques in Shape Analysis.- 3. Background: Relevant Tools from Geometry.- 4. Functional Data and Elastic Registration.- 5. Shapes of Planar Curves.- 6. Shapes of Planar Closed Curves.- 7. Statistical Modeling on Nonlinear Manifolds.- 8. Statistical Modeling of Functional Data.- 9. Statistical Modeling of Planar Shapes.- 10. Shapes of Curves in Higher Dimensions.- 11. Related Topics in Shape Analysis of Curves.- A. Background Material.- B. The Dynamic Programming Algorithm.- References.- Index.
Erscheinungsjahr: | 2016 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
xviii
447 S. 65 s/w Illustr. 182 farbige Illustr. 447 p. 247 illus. 182 illus. in color. |
ISBN-13: | 9781493940189 |
ISBN-10: | 149394018X |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Klassen, Eric P.
Srivastava, Anuj |
Auflage: | 1st edition 2016 |
Hersteller: |
Springer US
Springer New York |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 260 x 183 x 31 mm |
Von/Mit: | Eric P. Klassen (u. a.) |
Erscheinungsdatum: | 03.10.2016 |
Gewicht: | 1,07 kg |