Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Geometric Aspects of General Topology
Buch von Katsuro Sakai
Sprache: Englisch

149,79 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This book is designed for graduate students to acquire knowledge of dimension theory, ANR theory (theory of retracts), and related topics. These two theories are connected with various fields in geometric topology and in general topology as well. Hence, for students who wish to research subjects in general and geometric topology, understanding these theories will be valuable. Many proofs are illustrated by figures or diagrams, making it easier to understand the ideas of those proofs. Although exercises as such are not included, some results are given with only a sketch of their proofs. Completing the proofs in detail provides good exercise and training for graduate students and will be useful in graduate classes or seminars.
Researchers should also find this book very helpful, because it contains many subjects that are not presented in usual textbooks, e.g., dim X × I = dim X + 1 for a metrizable space X; the difference between the small and large inductive dimensions; a hereditarily infinite-dimensional space; the ANR-ness of locally contractible countable-dimensional metrizable spaces; an infinite-dimensional space with finite cohomological dimension; a dimension raising cell-like map; and a non-AR metric linear space. The final chapter enables students to understand how deeply related the two theories are.
Simplicial complexes are very useful in topology andare indispensable for studying the theories of both dimension and ANRs. There are many textbooks from which some knowledge of these subjects can be obtained, but no textbook discusses non-locally finite simplicial complexes in detail. So, when we encounter them, we have to refer to the original papers. For instance, J.H.C. Whitehead's theorem on small subdivisions is very important, but its proof cannot be found in any textbook. The homotopy type of simplicial complexes is discussed in textbooks on algebraic topology using CW complexes, but geometrical arguments using simplicial complexes are rather easy.
This book is designed for graduate students to acquire knowledge of dimension theory, ANR theory (theory of retracts), and related topics. These two theories are connected with various fields in geometric topology and in general topology as well. Hence, for students who wish to research subjects in general and geometric topology, understanding these theories will be valuable. Many proofs are illustrated by figures or diagrams, making it easier to understand the ideas of those proofs. Although exercises as such are not included, some results are given with only a sketch of their proofs. Completing the proofs in detail provides good exercise and training for graduate students and will be useful in graduate classes or seminars.
Researchers should also find this book very helpful, because it contains many subjects that are not presented in usual textbooks, e.g., dim X × I = dim X + 1 for a metrizable space X; the difference between the small and large inductive dimensions; a hereditarily infinite-dimensional space; the ANR-ness of locally contractible countable-dimensional metrizable spaces; an infinite-dimensional space with finite cohomological dimension; a dimension raising cell-like map; and a non-AR metric linear space. The final chapter enables students to understand how deeply related the two theories are.
Simplicial complexes are very useful in topology andare indispensable for studying the theories of both dimension and ANRs. There are many textbooks from which some knowledge of these subjects can be obtained, but no textbook discusses non-locally finite simplicial complexes in detail. So, when we encounter them, we have to refer to the original papers. For instance, J.H.C. Whitehead's theorem on small subdivisions is very important, but its proof cannot be found in any textbook. The homotopy type of simplicial complexes is discussed in textbooks on algebraic topology using CW complexes, but geometrical arguments using simplicial complexes are rather easy.
Über den Autor
Katsuro Sakai Associate Professor University of Tsukuba, Institute of Mathematics Academic Degrees ¿Bachelor of Science-Nagoya University, March 1972 ¿Master of Science-Tokyo University of Education, March 1974 ¿Doctor of Science-University of Tsukuba, October 1979
Zusammenfassung

The perfect book for acquiring fundamental knowledge of simplicial complexes and the theories of dimension and retracts

Many proofs are illustrated by figures or diagrams for easier understanding

Fascinating problems in the final chapter enable readers to understand how deeply related the theories of dimension and retracts are

Details
Erscheinungsjahr: 2013
Fachbereich: Geometrie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Springer Monographs in Mathematics
Inhalt: xv
525 S.
79 s/w Illustr.
525 p. 79 illus.
ISBN-13: 9784431543961
ISBN-10: 4431543961
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Sakai, Katsuro
Hersteller: Springer Japan
Springer Japan KK
Springer Monographs in Mathematics
Maße: 241 x 160 x 35 mm
Von/Mit: Katsuro Sakai
Erscheinungsdatum: 05.08.2013
Gewicht: 0,969 kg
Artikel-ID: 105723143
Über den Autor
Katsuro Sakai Associate Professor University of Tsukuba, Institute of Mathematics Academic Degrees ¿Bachelor of Science-Nagoya University, March 1972 ¿Master of Science-Tokyo University of Education, March 1974 ¿Doctor of Science-University of Tsukuba, October 1979
Zusammenfassung

The perfect book for acquiring fundamental knowledge of simplicial complexes and the theories of dimension and retracts

Many proofs are illustrated by figures or diagrams for easier understanding

Fascinating problems in the final chapter enable readers to understand how deeply related the theories of dimension and retracts are

Details
Erscheinungsjahr: 2013
Fachbereich: Geometrie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Springer Monographs in Mathematics
Inhalt: xv
525 S.
79 s/w Illustr.
525 p. 79 illus.
ISBN-13: 9784431543961
ISBN-10: 4431543961
Sprache: Englisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Sakai, Katsuro
Hersteller: Springer Japan
Springer Japan KK
Springer Monographs in Mathematics
Maße: 241 x 160 x 35 mm
Von/Mit: Katsuro Sakai
Erscheinungsdatum: 05.08.2013
Gewicht: 0,969 kg
Artikel-ID: 105723143
Warnhinweis