Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Finite Systemtheorie
Taschenbuch von Wilhelm Klein
Sprache: Deutsch

54,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Die zeitdiskreten Systeme, die in der Nachrichtentechnik und in der Regelungstechnik eine ständig wachsende Bedeutung bekommen, werden heute gewöhnlich durch die (infinite) Z-Transformation beschrieben. Gegenstand dieses Buches ist im Gegensatz dazu eine finite Beschrei­ bung dieser Systeme (ohne die Begriffe "kontinuierlich", "unendlich" und "konvergent"), die unmittelbar auf dem Digitalrechner implementierbar ist. Das wird dadurch möglich, daß man die Zeitfunktionen als per i- disehe Impulsfolgen annimmt. Das Buch ist das erweiterte Skriptum einer Vorlesung, die ich seit 1972 an der Technischen Hochschule Darmstadt halte. Abgesehen von § 1, der einen kurzen Überblick über die konventionelle infinite Systemtheorie gibt, ist an mathematischen Vorkenntnissen lediglich die Matrizenalgebra erforder lieh. Ich danke den Herren Dr. -Ing. Hermann Kremer und Dipl. -Ing. Raimund L ü c k e r für fruchtbare Diskussionen und für die kritische Durchsicht des Manuskripts. Darmstadt, im Sommer 1976 Wilhelm Klein "Man kann die Ingenieure bedauern, die es so lange aufge­ schoben haben, sich mit der Laplace-Transformation zu befreunden, bis sie ins Museum verwiesen wurde. Aber so etwas ist schon öfter geschehen. Wir Mathematiker werden auch für unsere Fahrlässigkeit bestraft: Unsere Strafe ist die Aufgabe, ihnen die Laplace-Transformation nun wieder auszutreiben. " Der Mathematiker Hans Freudenthai im Jahre 1958 [9. S]. INHALT Seite 1 § 1. überblick über die infinite Systemtheorie 1. 1. Der Begriff des Systems 1 2 1. 2. Infinite und finite Systemtheorie 6 1. 3. DerZeitbereich 6 1. 3. 1. Impuls und Impulsantwort 6 1. 3. 2. Das Faltungsintegral 9 1. 4.
Die zeitdiskreten Systeme, die in der Nachrichtentechnik und in der Regelungstechnik eine ständig wachsende Bedeutung bekommen, werden heute gewöhnlich durch die (infinite) Z-Transformation beschrieben. Gegenstand dieses Buches ist im Gegensatz dazu eine finite Beschrei­ bung dieser Systeme (ohne die Begriffe "kontinuierlich", "unendlich" und "konvergent"), die unmittelbar auf dem Digitalrechner implementierbar ist. Das wird dadurch möglich, daß man die Zeitfunktionen als per i- disehe Impulsfolgen annimmt. Das Buch ist das erweiterte Skriptum einer Vorlesung, die ich seit 1972 an der Technischen Hochschule Darmstadt halte. Abgesehen von § 1, der einen kurzen Überblick über die konventionelle infinite Systemtheorie gibt, ist an mathematischen Vorkenntnissen lediglich die Matrizenalgebra erforder lieh. Ich danke den Herren Dr. -Ing. Hermann Kremer und Dipl. -Ing. Raimund L ü c k e r für fruchtbare Diskussionen und für die kritische Durchsicht des Manuskripts. Darmstadt, im Sommer 1976 Wilhelm Klein "Man kann die Ingenieure bedauern, die es so lange aufge­ schoben haben, sich mit der Laplace-Transformation zu befreunden, bis sie ins Museum verwiesen wurde. Aber so etwas ist schon öfter geschehen. Wir Mathematiker werden auch für unsere Fahrlässigkeit bestraft: Unsere Strafe ist die Aufgabe, ihnen die Laplace-Transformation nun wieder auszutreiben. " Der Mathematiker Hans Freudenthai im Jahre 1958 [9. S]. INHALT Seite 1 § 1. überblick über die infinite Systemtheorie 1. 1. Der Begriff des Systems 1 2 1. 2. Infinite und finite Systemtheorie 6 1. 3. DerZeitbereich 6 1. 3. 1. Impuls und Impulsantwort 6 1. 3. 2. Das Faltungsintegral 9 1. 4.
Inhaltsverzeichnis
§ 1. Überblick über die infinite Systemtheorie.- 1.1. Der Begriff des Systems.- 1.2. Infinite und finite Systemtheorie.- 1.3. Der Zeitbereich.- 1.4. Der Frequenzbereich.- 1.5. Der Z-Bereich.- § 2. Der finite Zeitbereich.- 2.1. Zeitdiskrete Systeme.- 2.2. Die Pulsantwort und die zyklische Faltung.- 2.3. Zusammenhang mit der klassischen Systemtheorie.- 2.4. Die Z-Koeffizienten.- 2.5. Ermittlung der Ausgangsfunktion y aus der Eingangsfunktion x und den Z-Koeffizienten.- 2.6. Systemidentifikation bei überlappten Perioden.- 2.7. Dreiecksfaltung.- 2.8. Das Überlappen der Impulsantworten.- 2.9. Systemidentifikation bei nichtüberlappten Perioden.- 2. 10. Systemidentifikation bei fehlerhaften Meßwerten und unbekanntem Systemgrad.- 2.11. Realisierungen.- § 3. Der finite Z-Bereich.- 3.1. Die finite Z-Systemfunktion in der Quotientenform.- 3.2. Z-Systemfunktion und Impulsantwort.- 3.3. Zahlenbeispiel.- 3.4. Finite Z-Transformation mit komplexen Frequenzen.- 3.5. Die finite Laplacesystemfunktion in Produktform.- 3.6. Die Stabilität des Systems.- § 4. Anwendungen der finiten Fouriertransformation.- 4.1. Die Schnelle Fouriertransformation.- 4.2. Die reelle finite Fouriertransformation.- 4.3. Die Hauptachsentransformation von Toeplitzmatrizen.- 4.4. Schaltungen mit linearer Phase.- § 5. Interpolation und Abtastung.- 5.1. Bezeichnungen.- 5.2. Der ideale Abtaster.- 5.3. Das finite Abtasttheorem.- 5.4. Die frequenzbegrenzte Interpolationsfunktion.- 5.5. Zahlenbeispiel.- 5.6. Zeitkontinuierliche Interpolation.- 5.7. Abtastung einer zeitkontinuierlichen Funktion.- § 6. Analyse und Synthese zeitdiskreter Systeme.- 6.1. Das Analyseverfahren.- 6.2. Das transponierte System.- § 7. Der Tangensfrequenzbereich.- 7.1. Die zyklischen Differenzenmatrizen.- 7.2. Die Systemfunktion imTangensfrequenzbereich.- 7.3. Der Zusammenhang zwischen der Z-Systemfunktion und der Systemfunktion im Tangensfrequenzbereich.- 7.4. Angenäherte Berechnung der Impulsantwort eines zeitkontinuierlichen Systems.- 7.5. Entwurf eines zeitdiskreten Systems aus einem gegebenen Toleranzschema.- § 8. Streifen-Dreiecksmatrizen.- 8.1. Die Dreiecks-Differenzenmatrizen.- 8.2. Die Differenzenform der Differenzengleichung.- 8.3. Die Lösung der Differenzengleichung.- 8.4. Der Austausch der Anfangswerte.- 8.5. Beispiel: Die Differenzengleichung der Fibonaccischen Zahlen.- § 9. Die Operatorenrechnung.- 9.1. Die Heavisidesche Operatorenrechnung und ihre exakten Begründungen.- 9.2. Lösung der Differentialgleichung (2) mit der finiten Systemtheorie.- 9.3. Die finite Operatorenrechnung.- § 10. Die Hilberttransformation.- 10.1. Der zeitdiskrete zeitinvariante Hilberttransformator.- 10.2. Die Hilbertmatrix für ungerade N.- 10.3. Die Hilbertmatrix für gerade N.- 10.4. Zahlenbeispiel.- 10.5. Der zeitdiskrete zeitvariante Hilberttransformator.- 10.6. Die infinite Hilberttransformation.- Anhang 1: Definitionen und Rechenregeln der finiten Systemtheorie.- I. Vektoren und Matrizen mit zyklischen Indexen.- 1. Vektoren mit zyklischem Index.- 2. Die zyklische Matrix.- 3. Die Hauptachsentransformation der zyklischen Matrix.- 4. Die Z-Transformationsmatrix (Laplacematrix).- 5. Die Fouriermatrix.- 6. Die Diskrete Fouriertransformation.- 7. Zusammenhang zwischen finiter und infiniter Systemtheorie.- 7.1. Die endliche Fourierreihe.- 7.2. Die unendliche Fourierreihe.- 7.3. Das Fourierintegral und das Laplaceintegral.- 7.4. Die finite und die infinite Z-Transformation.- 8. Die Schnelle Fouriertransformation.- 9. Rechenregeln für zyklische Matrizen.- 10. Die zyklische Faltung.- 11. Die zyklischeEntfaltung.- 12. Die zyklischen Differenzenmatrizen.- 13. Polynomentwicklung einer zyklischen Matrix.- 14. Faktorisierung einer zyklischen Matrix.- 15. Partialbruchzerlegung der Inversen einer zyklischen Matrix.- 16. Die Inverse einer zyklischen Matrix.- II. Streifen-Dreiecksmatrizen.- 17. Die Dreiecksmatrix mit Streifenstruktur.- 18. Rechenregeln für Streifendreiecksmatrizen.- 19. Dreiecksfaltung.- 20. Dreiecksentfaltung.- 21. Polynomentwicklung einer Streifen-Dreiecksmatrix.- 22. Faktorisierung einer Streifen-Dreiecksmatrix.- 23. Partialbruchentwicklung der Inversen einer Streifen-Dreiecksmatrix.- 24. Die Inverse einer Streifen-Dreiecksmatrix.- 25. Die Dreiecks-Differenzenmatrizen.- 26. Faktorisierung eines Differenzenpolynoms.- 27. Partialbruchzerlegung der Inversen eines Differenzpolynoms.- 28. Die Inverse eines Differenzenpolynoms.- 29. Summierung einer Potenzfolge.- Anhang 2: Beweise.- 1. Beweis der Formeln (A112) und (A113).- 2. Beweis der Formel (A118).- 3. Beweis der Strukturregel der Pascalmatrix Gl. (7.20).- Literatur.
Details
Erscheinungsjahr: 1976
Fachbereich: Allgemeines
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Teubner Studienbücher Technik
Inhalt: viii
146 S.
ISBN-13: 9783519061069
ISBN-10: 3519061066
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Klein, Wilhelm
Auflage: Softcover reprint of the original 1st ed. 1976
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Teubner Studienbücher Technik
Maße: 203 x 127 x 11 mm
Von/Mit: Wilhelm Klein
Erscheinungsdatum: 01.09.1976
Gewicht: 0,217 kg
Artikel-ID: 105723689
Inhaltsverzeichnis
§ 1. Überblick über die infinite Systemtheorie.- 1.1. Der Begriff des Systems.- 1.2. Infinite und finite Systemtheorie.- 1.3. Der Zeitbereich.- 1.4. Der Frequenzbereich.- 1.5. Der Z-Bereich.- § 2. Der finite Zeitbereich.- 2.1. Zeitdiskrete Systeme.- 2.2. Die Pulsantwort und die zyklische Faltung.- 2.3. Zusammenhang mit der klassischen Systemtheorie.- 2.4. Die Z-Koeffizienten.- 2.5. Ermittlung der Ausgangsfunktion y aus der Eingangsfunktion x und den Z-Koeffizienten.- 2.6. Systemidentifikation bei überlappten Perioden.- 2.7. Dreiecksfaltung.- 2.8. Das Überlappen der Impulsantworten.- 2.9. Systemidentifikation bei nichtüberlappten Perioden.- 2. 10. Systemidentifikation bei fehlerhaften Meßwerten und unbekanntem Systemgrad.- 2.11. Realisierungen.- § 3. Der finite Z-Bereich.- 3.1. Die finite Z-Systemfunktion in der Quotientenform.- 3.2. Z-Systemfunktion und Impulsantwort.- 3.3. Zahlenbeispiel.- 3.4. Finite Z-Transformation mit komplexen Frequenzen.- 3.5. Die finite Laplacesystemfunktion in Produktform.- 3.6. Die Stabilität des Systems.- § 4. Anwendungen der finiten Fouriertransformation.- 4.1. Die Schnelle Fouriertransformation.- 4.2. Die reelle finite Fouriertransformation.- 4.3. Die Hauptachsentransformation von Toeplitzmatrizen.- 4.4. Schaltungen mit linearer Phase.- § 5. Interpolation und Abtastung.- 5.1. Bezeichnungen.- 5.2. Der ideale Abtaster.- 5.3. Das finite Abtasttheorem.- 5.4. Die frequenzbegrenzte Interpolationsfunktion.- 5.5. Zahlenbeispiel.- 5.6. Zeitkontinuierliche Interpolation.- 5.7. Abtastung einer zeitkontinuierlichen Funktion.- § 6. Analyse und Synthese zeitdiskreter Systeme.- 6.1. Das Analyseverfahren.- 6.2. Das transponierte System.- § 7. Der Tangensfrequenzbereich.- 7.1. Die zyklischen Differenzenmatrizen.- 7.2. Die Systemfunktion imTangensfrequenzbereich.- 7.3. Der Zusammenhang zwischen der Z-Systemfunktion und der Systemfunktion im Tangensfrequenzbereich.- 7.4. Angenäherte Berechnung der Impulsantwort eines zeitkontinuierlichen Systems.- 7.5. Entwurf eines zeitdiskreten Systems aus einem gegebenen Toleranzschema.- § 8. Streifen-Dreiecksmatrizen.- 8.1. Die Dreiecks-Differenzenmatrizen.- 8.2. Die Differenzenform der Differenzengleichung.- 8.3. Die Lösung der Differenzengleichung.- 8.4. Der Austausch der Anfangswerte.- 8.5. Beispiel: Die Differenzengleichung der Fibonaccischen Zahlen.- § 9. Die Operatorenrechnung.- 9.1. Die Heavisidesche Operatorenrechnung und ihre exakten Begründungen.- 9.2. Lösung der Differentialgleichung (2) mit der finiten Systemtheorie.- 9.3. Die finite Operatorenrechnung.- § 10. Die Hilberttransformation.- 10.1. Der zeitdiskrete zeitinvariante Hilberttransformator.- 10.2. Die Hilbertmatrix für ungerade N.- 10.3. Die Hilbertmatrix für gerade N.- 10.4. Zahlenbeispiel.- 10.5. Der zeitdiskrete zeitvariante Hilberttransformator.- 10.6. Die infinite Hilberttransformation.- Anhang 1: Definitionen und Rechenregeln der finiten Systemtheorie.- I. Vektoren und Matrizen mit zyklischen Indexen.- 1. Vektoren mit zyklischem Index.- 2. Die zyklische Matrix.- 3. Die Hauptachsentransformation der zyklischen Matrix.- 4. Die Z-Transformationsmatrix (Laplacematrix).- 5. Die Fouriermatrix.- 6. Die Diskrete Fouriertransformation.- 7. Zusammenhang zwischen finiter und infiniter Systemtheorie.- 7.1. Die endliche Fourierreihe.- 7.2. Die unendliche Fourierreihe.- 7.3. Das Fourierintegral und das Laplaceintegral.- 7.4. Die finite und die infinite Z-Transformation.- 8. Die Schnelle Fouriertransformation.- 9. Rechenregeln für zyklische Matrizen.- 10. Die zyklische Faltung.- 11. Die zyklischeEntfaltung.- 12. Die zyklischen Differenzenmatrizen.- 13. Polynomentwicklung einer zyklischen Matrix.- 14. Faktorisierung einer zyklischen Matrix.- 15. Partialbruchzerlegung der Inversen einer zyklischen Matrix.- 16. Die Inverse einer zyklischen Matrix.- II. Streifen-Dreiecksmatrizen.- 17. Die Dreiecksmatrix mit Streifenstruktur.- 18. Rechenregeln für Streifendreiecksmatrizen.- 19. Dreiecksfaltung.- 20. Dreiecksentfaltung.- 21. Polynomentwicklung einer Streifen-Dreiecksmatrix.- 22. Faktorisierung einer Streifen-Dreiecksmatrix.- 23. Partialbruchentwicklung der Inversen einer Streifen-Dreiecksmatrix.- 24. Die Inverse einer Streifen-Dreiecksmatrix.- 25. Die Dreiecks-Differenzenmatrizen.- 26. Faktorisierung eines Differenzenpolynoms.- 27. Partialbruchzerlegung der Inversen eines Differenzpolynoms.- 28. Die Inverse eines Differenzenpolynoms.- 29. Summierung einer Potenzfolge.- Anhang 2: Beweise.- 1. Beweis der Formeln (A112) und (A113).- 2. Beweis der Formel (A118).- 3. Beweis der Strukturregel der Pascalmatrix Gl. (7.20).- Literatur.
Details
Erscheinungsjahr: 1976
Fachbereich: Allgemeines
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Teubner Studienbücher Technik
Inhalt: viii
146 S.
ISBN-13: 9783519061069
ISBN-10: 3519061066
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Klein, Wilhelm
Auflage: Softcover reprint of the original 1st ed. 1976
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Teubner Studienbücher Technik
Maße: 203 x 127 x 11 mm
Von/Mit: Wilhelm Klein
Erscheinungsdatum: 01.09.1976
Gewicht: 0,217 kg
Artikel-ID: 105723689
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte