Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
56,75 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Kategorien:
Beschreibung
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981).
This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regularextensions. Chapter 6 treats ordered groups and fields and based on it is Chapter 7: modules over a p.i.d. studies of torsion modules, free modules, finite type modules, with applications to abelian groups and endomorphisms of vector spaces. Sections on semi-simple endomorphisms and Jordan decomposition have been added.
Chapter IV: Polynomials and Rational Fractions
Chapter V: Commutative Fields
Chapter VI: Ordered Groups and Fields
Chapter VII: Modules Over Principal Ideal Domains
This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regularextensions. Chapter 6 treats ordered groups and fields and based on it is Chapter 7: modules over a p.i.d. studies of torsion modules, free modules, finite type modules, with applications to abelian groups and endomorphisms of vector spaces. Sections on semi-simple endomorphisms and Jordan decomposition have been added.
Chapter IV: Polynomials and Rational Fractions
Chapter V: Commutative Fields
Chapter VI: Ordered Groups and Fields
Chapter VII: Modules Over Principal Ideal Domains
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981).
This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regularextensions. Chapter 6 treats ordered groups and fields and based on it is Chapter 7: modules over a p.i.d. studies of torsion modules, free modules, finite type modules, with applications to abelian groups and endomorphisms of vector spaces. Sections on semi-simple endomorphisms and Jordan decomposition have been added.
Chapter IV: Polynomials and Rational Fractions
Chapter V: Commutative Fields
Chapter VI: Ordered Groups and Fields
Chapter VII: Modules Over Principal Ideal Domains
This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regularextensions. Chapter 6 treats ordered groups and fields and based on it is Chapter 7: modules over a p.i.d. studies of torsion modules, free modules, finite type modules, with applications to abelian groups and endomorphisms of vector spaces. Sections on semi-simple endomorphisms and Jordan decomposition have been added.
Chapter IV: Polynomials and Rational Fractions
Chapter V: Commutative Fields
Chapter VI: Ordered Groups and Fields
Chapter VII: Modules Over Principal Ideal Domains
Zusammenfassung
Softcover
Inhaltsverzeichnis
IV. - Polynomials and rational fractions.- V. - Commutative fields.- VI. - Ordered groups and fields.- VII. - Modules over principal ideal domains.- Index of notations.- Index of terminology.
Details
Erscheinungsjahr: | 2003 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Elements of Mathematics |
Inhalt: |
vii
453 S. |
ISBN-13: | 9783540007067 |
ISBN-10: | 3540007067 |
Sprache: | Englisch |
Herstellernummer: | 10670344 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Bourbaki, N. |
Übersetzung: |
Howie, J.
Cohn, P. M. |
Auflage: | 1st ed. 1990. 2nd printing 2003 |
Hersteller: |
Springer Berlin
Springer Berlin Heidelberg Elements of Mathematics |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 25 mm |
Von/Mit: | N. Bourbaki |
Erscheinungsdatum: | 16.04.2003 |
Gewicht: | 0,698 kg |
Zusammenfassung
Softcover
Inhaltsverzeichnis
IV. - Polynomials and rational fractions.- V. - Commutative fields.- VI. - Ordered groups and fields.- VII. - Modules over principal ideal domains.- Index of notations.- Index of terminology.
Details
Erscheinungsjahr: | 2003 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Elements of Mathematics |
Inhalt: |
vii
453 S. |
ISBN-13: | 9783540007067 |
ISBN-10: | 3540007067 |
Sprache: | Englisch |
Herstellernummer: | 10670344 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Bourbaki, N. |
Übersetzung: |
Howie, J.
Cohn, P. M. |
Auflage: | 1st ed. 1990. 2nd printing 2003 |
Hersteller: |
Springer Berlin
Springer Berlin Heidelberg Elements of Mathematics |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 25 mm |
Von/Mit: | N. Bourbaki |
Erscheinungsdatum: | 16.04.2003 |
Gewicht: | 0,698 kg |
Sicherheitshinweis