Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
72,25 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Kategorien:
Beschreibung
Bridging the gap between elementary number theory and the systematic study of advanced topics, A Classical Introduction to Modern Number Theory is a well-developed and accessible text that requires only a familiarity with basic abstract algebra. Historical development is stressed throughout, along with wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. An extensive bibliography and many challenging exercises are also included. This second edition has been corrected and contains two new chapters which provide a complete proof of the Mordell-Weil theorem for elliptic curves over the rational numbers, and an overview of recent progress on the arithmetic of elliptic curves.
Bridging the gap between elementary number theory and the systematic study of advanced topics, A Classical Introduction to Modern Number Theory is a well-developed and accessible text that requires only a familiarity with basic abstract algebra. Historical development is stressed throughout, along with wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. An extensive bibliography and many challenging exercises are also included. This second edition has been corrected and contains two new chapters which provide a complete proof of the Mordell-Weil theorem for elliptic curves over the rational numbers, and an overview of recent progress on the arithmetic of elliptic curves.
Zusammenfassung
A CLASSICAL INTRODUCTION TO MODERN NUMBER THEORY is a well-developed and accessible text that requires only a familiarity with basic abstract algebra. Historical developement is stressed throughout, along with wide-ranging coverage of significant results with comparitively elementary proofs, some of them new. This second edition has been corrected and contains two new chapters which provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers, and an overview of recent progress on the arithmetic of elliptic curves.
Inhaltsverzeichnis
1: Unique Factorization. 2: Applications of Unique Factorization. 3: Congruence. 4: The Structure of U. 5: Quadratic Reciprocity. 6: Quadratic Gauss Sums. 7: Finite Fields. 8: Gauss and Jacobi Sums. 9: Cubic and Biquadratic Reciprocity. 10: Equations over Finite Fields. 11: The Zeta Function. 12: Algebraic Number Theory. 13: Quadratic and Cyclotomic Fields. 14: The Stickelberger Relation and the Eisenstein Reciprocity Law. 15: Bernoulli Numbers. 16: Dirichlet L-functions. 17: Diophantine Equations. 18: Elliptic Curves. 19: The Mordell-Weil Theorem. 20: New Progress in Arithmetic Geometry.
Details
Erscheinungsjahr: | 2010 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xiv
394 S. |
ISBN-13: | 9781441930941 |
ISBN-10: | 1441930949 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Rosen, Michael
Ireland, Kenneth |
Auflage: | Second Edition 1990 |
Hersteller: |
Springer New York
Springer US, New York, N.Y. |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 23 mm |
Von/Mit: | Michael Rosen (u. a.) |
Erscheinungsdatum: | 01.12.2010 |
Gewicht: | 0,622 kg |
Zusammenfassung
A CLASSICAL INTRODUCTION TO MODERN NUMBER THEORY is a well-developed and accessible text that requires only a familiarity with basic abstract algebra. Historical developement is stressed throughout, along with wide-ranging coverage of significant results with comparitively elementary proofs, some of them new. This second edition has been corrected and contains two new chapters which provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers, and an overview of recent progress on the arithmetic of elliptic curves.
Inhaltsverzeichnis
1: Unique Factorization. 2: Applications of Unique Factorization. 3: Congruence. 4: The Structure of U. 5: Quadratic Reciprocity. 6: Quadratic Gauss Sums. 7: Finite Fields. 8: Gauss and Jacobi Sums. 9: Cubic and Biquadratic Reciprocity. 10: Equations over Finite Fields. 11: The Zeta Function. 12: Algebraic Number Theory. 13: Quadratic and Cyclotomic Fields. 14: The Stickelberger Relation and the Eisenstein Reciprocity Law. 15: Bernoulli Numbers. 16: Dirichlet L-functions. 17: Diophantine Equations. 18: Elliptic Curves. 19: The Mordell-Weil Theorem. 20: New Progress in Arithmetic Geometry.
Details
Erscheinungsjahr: | 2010 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xiv
394 S. |
ISBN-13: | 9781441930941 |
ISBN-10: | 1441930949 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Rosen, Michael
Ireland, Kenneth |
Auflage: | Second Edition 1990 |
Hersteller: |
Springer New York
Springer US, New York, N.Y. |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 23 mm |
Von/Mit: | Michael Rosen (u. a.) |
Erscheinungsdatum: | 01.12.2010 |
Gewicht: | 0,622 kg |
Sicherheitshinweis