Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Übungsbeispiele zur Systemtheorie
41 Aufgaben mit ausführlich kommentierten Lösungen
Taschenbuch von Josef Hofer-Alfeis
Sprache: Deutsch

54,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Kapi tel und Lasungen sind in diesem Buchteil in gleicher Weise durchnummeriert wie im Aufgabentei 1, unterschieden durch ein vorgestelltes L statt A. Hinweise auf das Buch "Methoden der Systemtheorie" von H. Marko, 2. Auflage 1982 (Band 1 dieser Buchreihe), werden mi t "MS S .... " oder MS ( ... Formelnummer ... ) gegeben. Weitere Literaturempfehlungen finden sich z.B. am Ende des obengenannten Buches. Vor jedem Lasungsunterpunkt ist des einfacheren Vberlicks willen stichwortartig die Aufgabenstellung wiederholt. ErUiuterungen, die liber die geforderte Lasung hinausgegen, sind in Klammern dazugesetzt. Erklarungen zu Herlei tungsschri tten sind oft mi t einem Pfeil auf das vorangehende Gleichheitszeichen gegeben. Komplexe GraBen werden nur bei den Fourierkoeffizienten durch Unterstreichen zur Unterscheidung von den gleichnamigen reel len GraBen gekennzeichnet. 55 L 1.1 Periodische Siigezahnfunktion, mit Parameter 7 auf der Zeitachse verschiebbar (1) a) formelmaBige Darstellung mit T=O ue(t) = * t rect «(t-T/2)/T) u(t) = ~o (t-kT) rect((t-kT-T/2)/T), k= ... -1,0,1,2, ... oder O~tfT , -t T u (t) e = sonst r ° Uo kT f t f (k+ 1 ) T u(t) -( t-kT), k= ..¿ -1 , ° 1 , ,2, ... = T b) formelmaBige Darstellung mit 1::":\:0 Uo u(t) = T (t-7:'-kT) rect ((t-7:-kT-T/2)/T), k= ... -1 ,0, 1 ,2, ...
Kapi tel und Lasungen sind in diesem Buchteil in gleicher Weise durchnummeriert wie im Aufgabentei 1, unterschieden durch ein vorgestelltes L statt A. Hinweise auf das Buch "Methoden der Systemtheorie" von H. Marko, 2. Auflage 1982 (Band 1 dieser Buchreihe), werden mi t "MS S .... " oder MS ( ... Formelnummer ... ) gegeben. Weitere Literaturempfehlungen finden sich z.B. am Ende des obengenannten Buches. Vor jedem Lasungsunterpunkt ist des einfacheren Vberlicks willen stichwortartig die Aufgabenstellung wiederholt. ErUiuterungen, die liber die geforderte Lasung hinausgegen, sind in Klammern dazugesetzt. Erklarungen zu Herlei tungsschri tten sind oft mi t einem Pfeil auf das vorangehende Gleichheitszeichen gegeben. Komplexe GraBen werden nur bei den Fourierkoeffizienten durch Unterstreichen zur Unterscheidung von den gleichnamigen reel len GraBen gekennzeichnet. 55 L 1.1 Periodische Siigezahnfunktion, mit Parameter 7 auf der Zeitachse verschiebbar (1) a) formelmaBige Darstellung mit T=O ue(t) = * t rect «(t-T/2)/T) u(t) = ~o (t-kT) rect((t-kT-T/2)/T), k= ... -1,0,1,2, ... oder O~tfT , -t T u (t) e = sonst r ° Uo kT f t f (k+ 1 ) T u(t) -( t-kT), k= ..¿ -1 , ° 1 , ,2, ... = T b) formelmaBige Darstellung mit 1::":\:0 Uo u(t) = T (t-7:'-kT) rect ((t-7:-kT-T/2)/T), k= ... -1 ,0, 1 ,2, ...
Inhaltsverzeichnis
Einführung.- 1. Spektralanalyse bei periodischen Funktionen.- 1.1 Periodische Sägezahnfunktion, mit Parameter ? auf der Zeitachse verschiebbar (1).- 1.2 Dirac-Puls.- 1.3 Periodische Sägezahnfunktion, mit Parameter ? 4 63 auf der Zeitachse verschiebbar (2).- 1.4 Kombinierte Dreiecksschwingung.- 1.5 Periodisches Ausgangssignal einer Phasenanschnittssteuerung.- 1.6 Periodische Rechteckfunktion mit Bandbegrenzung.- 2. Operationen mit dem Dirac-Impuls.- 2.1 Eigenschaften des Dirac-Impulses.- 2.2 Approximationen für den Dirac-Impuls.- 2.3 Faltung mit Dirac-Impuls.- 3. Anwendung der Integraltransformationen.- 3.1 Fourierintegral angewandt auf die rect-Funktion.- 3.2 Fourier- und Laplacetransformation einer halbstationären bzw. anklingenden Sinus-Schwingung.- 3.3 Fourier-, Laplace- und Allgemeine Spektraltransformation.- 3.4 Exponentielle Dämpfung.- 4. Lineare zeitinvariante Systeme mit kausaler Impulsantwort.- 4.1 Ausführliches Beispiel.- 4.2 RC-Hochpaß als Differenzier-Approximation.- 4.3 Aktive RC-Schaltung.- 4.4 Beispiel mit Laplace-Tabelle.- 4.5 Linearität und Zeitinvarianz.- 5. Faltung.- 5.1 Ausführliches Berechnungsbeispiel.- 5.2 System mit näherungsweise differnzierender Wirkung, Autokorrelations- und Autofaltungsfunktion.- 5.3 Bekannte systemtheoretische und mathematische Operationen ausgedrückt durch Faltung.- 5.4 Antwort eines Schmalbandfilters auf einen Rechteckimpuls.- 6. Gesetze der Fourier-Transformation (FT).- 6.1 Vereinfachung von Fourierkorrespondenzen mittels Differentiationssatz.- 6.2 Abgeschrägter Rechteckimpuls.- 6.3 Trapez-Impuls.- 7. Hilbert-Transformation (HT).- 7.1 Hilbert-Transformation im Zeitbereich.- 7.2 Hilbert-Transformation im Frequenzbereich.- 7.3 Realisierbare Minimumphasensysteme (MPS).- 7.4 Hilbert-Transformierte undFourierkorrespondenztafel.- 8. Einschwingvorgänge.- 8.1 Küpfmüller-, Spalt- und Gauß-Tiefpaß.- 8.2 Hochpaß, Bandpaß und Schmalbandnäherung.- 8.3 Gleich- und Wechselsignalsprungantwort eines Tiefpasses.- 8.4 Wechselsignalsprungantwort eines idealen Bandpasses.- 8.5 Gauß-Tief-,-Hoch- und Bandpaß.- 9. Das Abtasttheorem.- 9.1 Abtastung eines schmalbandgefilterten Signals.- 9.2 Abtastsystem.- 9.3 Abtastung im Zeit- und Frequenzbereich.- 10. Zeitdiskrete Signale und Systeme.- 10.1 Echoverzerrung.- 10.2 z-Transformation.- 10.3 Diskretes Entzerrungsfilter.- 10.4 Diskrete FT (DFT).- Einführung.- 1. Spektralanalyse bei periodischen Funktionen.- 1.1 Periodische Sägezahnfunktion, mit Parameter ? auf der Zeitachse verschiebbar (1).- 1.2 Dirac-Puls.- 1.3 Periodische Sägezahnfunktion, mit Parameter ? 4 63 auf der Zeitachse verschiebbar (2).- 1.4 Kombinierte Dreiecksschwingung.- 1.5 Periodisches Ausgangssignal einer Phasenanschnittssteuerung.- 1.6 Periodische Rechteckfunktion mit Bandbegrenzung.- 2. Operationen mit dem Dirac-Impuls.- 2.1 Eigenschaften des Dirac-Impulses.- 2.2 Approximationen für den Dirac-Impuls.- 2.3 Faltung mit Dirac-Impuls.- 3. Anwendung der Integraltransformationen.- 3.1 Fourierintegral angewandt auf die rect-Funktion.- 3.2 Fourier- und Laplacetransformation einer halbstationären bzw. anklingenden Sinus-Schwingung.- 3.3 Fourier-, Laplace- und Allgemeine Spektraltransformation.- 3.4 Exponentielle Dämpfung.- 4. Lineare zeitinvariante Systeme mit kausaler Impulsantwort.- 4.1 Ausführliches Beispiel.- 4.2 RC-Hochpaß als Differenzier-Approximation.- 4.3 Aktive RC-Schaltung.- 4.4 Beispiel mit Laplace-Tabelle.- 4.5 Linearität und Zeitinvarianz.- 5. Faltung.- 5.1 Ausführliches Berechnungsbeispiel.- 5.2 System mit näherungsweise differnzierenderWirkung, Autokorrelations- und Autofaltungsfunktion.- 5.3 Bekannte systemtheoretische und mathematische Operationen ausgedrückt durch Faltung.- 5.4 Antwort eines Schmalbandfilters auf einen Rechteckimpuls.- 6. Gesetze der Fourier-Transformation (FT).- 6.1 Vereinfachung von Fourierkorrespondenzen mittels Differentiationssatz.- 6.2 Abgeschrägter Rechteckimpuls.- 6.3 Trapez-Impuls.- 7. Hilbert-Transformation (HT).- 7.1 Hilbert-Transformation im Zeitbereich.- 7.2 Hilbert-Transformation im Frequenzbereich.- 7.3 Realisierbare Minimumphasensysteme (MPS).- 7.4 Hilbert-Transformierte und Fourierkorrespondenztafel.- 8. Einschwingvorgänge.- 8.1 Küpfmüller-, Spalt- und Gauß-Tiefpaß.- 8.2 Hochpaß, Bandpaß und Schmalbandnäherung.- 8.3 Gleich- und Wechselsignalsprungantwort eines Tiefpasses.- 8.4 Wechselsignalsprungantwort eines idealen Bandpasses.- 8.5 Gauß-Tief-,-Hoch- und Bandpaß.- 9. Das Abtasttheorem.- 9.1 Abtastung eines schmalbandgefilterten Signals.- 9.2 Abtastsystem.- 9.3 Abtastung im Zeit- und Frequenzbereich.- 10. Zeitdiskrete Signale und Systeme.- 10.1 Echoverzerrung.- 10.2 z-Transformation.- 10.3 Diskretes Entzerrungsfilter.- 10.4 Diskrete FT (DFT).
Details
Erscheinungsjahr: 1985
Fachbereich: Nachrichtentechnik
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xi
212 S.
ISBN-13: 9783540150831
ISBN-10: 3540150838
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Hofer-Alfeis, Josef
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 242 x 170 x 13 mm
Von/Mit: Josef Hofer-Alfeis
Erscheinungsdatum: 01.02.1985
Gewicht: 0,399 kg
Artikel-ID: 106454546
Inhaltsverzeichnis
Einführung.- 1. Spektralanalyse bei periodischen Funktionen.- 1.1 Periodische Sägezahnfunktion, mit Parameter ? auf der Zeitachse verschiebbar (1).- 1.2 Dirac-Puls.- 1.3 Periodische Sägezahnfunktion, mit Parameter ? 4 63 auf der Zeitachse verschiebbar (2).- 1.4 Kombinierte Dreiecksschwingung.- 1.5 Periodisches Ausgangssignal einer Phasenanschnittssteuerung.- 1.6 Periodische Rechteckfunktion mit Bandbegrenzung.- 2. Operationen mit dem Dirac-Impuls.- 2.1 Eigenschaften des Dirac-Impulses.- 2.2 Approximationen für den Dirac-Impuls.- 2.3 Faltung mit Dirac-Impuls.- 3. Anwendung der Integraltransformationen.- 3.1 Fourierintegral angewandt auf die rect-Funktion.- 3.2 Fourier- und Laplacetransformation einer halbstationären bzw. anklingenden Sinus-Schwingung.- 3.3 Fourier-, Laplace- und Allgemeine Spektraltransformation.- 3.4 Exponentielle Dämpfung.- 4. Lineare zeitinvariante Systeme mit kausaler Impulsantwort.- 4.1 Ausführliches Beispiel.- 4.2 RC-Hochpaß als Differenzier-Approximation.- 4.3 Aktive RC-Schaltung.- 4.4 Beispiel mit Laplace-Tabelle.- 4.5 Linearität und Zeitinvarianz.- 5. Faltung.- 5.1 Ausführliches Berechnungsbeispiel.- 5.2 System mit näherungsweise differnzierender Wirkung, Autokorrelations- und Autofaltungsfunktion.- 5.3 Bekannte systemtheoretische und mathematische Operationen ausgedrückt durch Faltung.- 5.4 Antwort eines Schmalbandfilters auf einen Rechteckimpuls.- 6. Gesetze der Fourier-Transformation (FT).- 6.1 Vereinfachung von Fourierkorrespondenzen mittels Differentiationssatz.- 6.2 Abgeschrägter Rechteckimpuls.- 6.3 Trapez-Impuls.- 7. Hilbert-Transformation (HT).- 7.1 Hilbert-Transformation im Zeitbereich.- 7.2 Hilbert-Transformation im Frequenzbereich.- 7.3 Realisierbare Minimumphasensysteme (MPS).- 7.4 Hilbert-Transformierte undFourierkorrespondenztafel.- 8. Einschwingvorgänge.- 8.1 Küpfmüller-, Spalt- und Gauß-Tiefpaß.- 8.2 Hochpaß, Bandpaß und Schmalbandnäherung.- 8.3 Gleich- und Wechselsignalsprungantwort eines Tiefpasses.- 8.4 Wechselsignalsprungantwort eines idealen Bandpasses.- 8.5 Gauß-Tief-,-Hoch- und Bandpaß.- 9. Das Abtasttheorem.- 9.1 Abtastung eines schmalbandgefilterten Signals.- 9.2 Abtastsystem.- 9.3 Abtastung im Zeit- und Frequenzbereich.- 10. Zeitdiskrete Signale und Systeme.- 10.1 Echoverzerrung.- 10.2 z-Transformation.- 10.3 Diskretes Entzerrungsfilter.- 10.4 Diskrete FT (DFT).- Einführung.- 1. Spektralanalyse bei periodischen Funktionen.- 1.1 Periodische Sägezahnfunktion, mit Parameter ? auf der Zeitachse verschiebbar (1).- 1.2 Dirac-Puls.- 1.3 Periodische Sägezahnfunktion, mit Parameter ? 4 63 auf der Zeitachse verschiebbar (2).- 1.4 Kombinierte Dreiecksschwingung.- 1.5 Periodisches Ausgangssignal einer Phasenanschnittssteuerung.- 1.6 Periodische Rechteckfunktion mit Bandbegrenzung.- 2. Operationen mit dem Dirac-Impuls.- 2.1 Eigenschaften des Dirac-Impulses.- 2.2 Approximationen für den Dirac-Impuls.- 2.3 Faltung mit Dirac-Impuls.- 3. Anwendung der Integraltransformationen.- 3.1 Fourierintegral angewandt auf die rect-Funktion.- 3.2 Fourier- und Laplacetransformation einer halbstationären bzw. anklingenden Sinus-Schwingung.- 3.3 Fourier-, Laplace- und Allgemeine Spektraltransformation.- 3.4 Exponentielle Dämpfung.- 4. Lineare zeitinvariante Systeme mit kausaler Impulsantwort.- 4.1 Ausführliches Beispiel.- 4.2 RC-Hochpaß als Differenzier-Approximation.- 4.3 Aktive RC-Schaltung.- 4.4 Beispiel mit Laplace-Tabelle.- 4.5 Linearität und Zeitinvarianz.- 5. Faltung.- 5.1 Ausführliches Berechnungsbeispiel.- 5.2 System mit näherungsweise differnzierenderWirkung, Autokorrelations- und Autofaltungsfunktion.- 5.3 Bekannte systemtheoretische und mathematische Operationen ausgedrückt durch Faltung.- 5.4 Antwort eines Schmalbandfilters auf einen Rechteckimpuls.- 6. Gesetze der Fourier-Transformation (FT).- 6.1 Vereinfachung von Fourierkorrespondenzen mittels Differentiationssatz.- 6.2 Abgeschrägter Rechteckimpuls.- 6.3 Trapez-Impuls.- 7. Hilbert-Transformation (HT).- 7.1 Hilbert-Transformation im Zeitbereich.- 7.2 Hilbert-Transformation im Frequenzbereich.- 7.3 Realisierbare Minimumphasensysteme (MPS).- 7.4 Hilbert-Transformierte und Fourierkorrespondenztafel.- 8. Einschwingvorgänge.- 8.1 Küpfmüller-, Spalt- und Gauß-Tiefpaß.- 8.2 Hochpaß, Bandpaß und Schmalbandnäherung.- 8.3 Gleich- und Wechselsignalsprungantwort eines Tiefpasses.- 8.4 Wechselsignalsprungantwort eines idealen Bandpasses.- 8.5 Gauß-Tief-,-Hoch- und Bandpaß.- 9. Das Abtasttheorem.- 9.1 Abtastung eines schmalbandgefilterten Signals.- 9.2 Abtastsystem.- 9.3 Abtastung im Zeit- und Frequenzbereich.- 10. Zeitdiskrete Signale und Systeme.- 10.1 Echoverzerrung.- 10.2 z-Transformation.- 10.3 Diskretes Entzerrungsfilter.- 10.4 Diskrete FT (DFT).
Details
Erscheinungsjahr: 1985
Fachbereich: Nachrichtentechnik
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xi
212 S.
ISBN-13: 9783540150831
ISBN-10: 3540150838
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Hofer-Alfeis, Josef
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 242 x 170 x 13 mm
Von/Mit: Josef Hofer-Alfeis
Erscheinungsdatum: 01.02.1985
Gewicht: 0,399 kg
Artikel-ID: 106454546
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte