Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Time Series Modelling with Unobserved Components
Taschenbuch von Matteo M. Pelagatti
Sprache: Englisch

81,30 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Despite the unobserved components model (UCM) having many advantages over more popular forecasting techniques based on regression analysis, exponential smoothing, and ARIMA, the UCM is not well known among practitioners outside the academic community. Time Series Modelling with Unobserved Components rectifies this deficiency by giving a practical overview of the UCM approach, covering some theoretical details, several applications, and the software for implementing UCMs.

The book's first part discusses introductory time series and prediction theory. Unlike most other books on time series, this text includes a chapter on prediction at the beginning because the problem of predicting is not limited to the field of time series analysis.

The second part introduces the UCM, the state space form, and related algorithms. It also provides practical modeling strategies to build and select the UCM that best fits the needs of time series analysts.

The third part presents real-world applications, with a chapter focusing on business cycle analysis and the construction of band-pass filters using UCMs. The book also reviews software packages that offer ready-to-use procedures for UCMs as well as systems popular among statisticians and econometricians that allow general estimation of models in state space form.

This book demonstrates the numerous benefits of using UCMs to model time series data. UCMs are simple to specify, their results are easy to visualize and communicate to non-specialists, and their forecasting performance is competitive. Moreover, various types of outliers can easily be identified, missing values are effortlessly managed, and working contemporaneously with time series observed at different frequencies poses no problem.
Despite the unobserved components model (UCM) having many advantages over more popular forecasting techniques based on regression analysis, exponential smoothing, and ARIMA, the UCM is not well known among practitioners outside the academic community. Time Series Modelling with Unobserved Components rectifies this deficiency by giving a practical overview of the UCM approach, covering some theoretical details, several applications, and the software for implementing UCMs.

The book's first part discusses introductory time series and prediction theory. Unlike most other books on time series, this text includes a chapter on prediction at the beginning because the problem of predicting is not limited to the field of time series analysis.

The second part introduces the UCM, the state space form, and related algorithms. It also provides practical modeling strategies to build and select the UCM that best fits the needs of time series analysts.

The third part presents real-world applications, with a chapter focusing on business cycle analysis and the construction of band-pass filters using UCMs. The book also reviews software packages that offer ready-to-use procedures for UCMs as well as systems popular among statisticians and econometricians that allow general estimation of models in state space form.

This book demonstrates the numerous benefits of using UCMs to model time series data. UCMs are simple to specify, their results are easy to visualize and communicate to non-specialists, and their forecasting performance is competitive. Moreover, various types of outliers can easily be identified, missing values are effortlessly managed, and working contemporaneously with time series observed at different frequencies poses no problem.
Über den Autor
Matteo M. Pelagatti
Inhaltsverzeichnis

Statistical Prediction and Time Series: Statistical Prediction. Time Series Concepts. Unobserved Components: Unobserved Components Model. Regressors and Interventions. Estimation. Modelling. Multivariate Models. Applications: Business Cycle Analysis with UCM. Case Studies. Software for UCM.

Details
Erscheinungsjahr: 2021
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781032098432
ISBN-10: 1032098430
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Pelagatti, Matteo M.
Hersteller: Chapman and Hall/CRC
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 234 x 156 x 15 mm
Von/Mit: Matteo M. Pelagatti
Erscheinungsdatum: 30.06.2021
Gewicht: 0,424 kg
Artikel-ID: 128438091
Über den Autor
Matteo M. Pelagatti
Inhaltsverzeichnis

Statistical Prediction and Time Series: Statistical Prediction. Time Series Concepts. Unobserved Components: Unobserved Components Model. Regressors and Interventions. Estimation. Modelling. Multivariate Models. Applications: Business Cycle Analysis with UCM. Case Studies. Software for UCM.

Details
Erscheinungsjahr: 2021
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781032098432
ISBN-10: 1032098430
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Pelagatti, Matteo M.
Hersteller: Chapman and Hall/CRC
Verantwortliche Person für die EU: Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 234 x 156 x 15 mm
Von/Mit: Matteo M. Pelagatti
Erscheinungsdatum: 30.06.2021
Gewicht: 0,424 kg
Artikel-ID: 128438091
Sicherheitshinweis