Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
The Spectrum of Hyperbolic Surfaces
Taschenbuch von Nicolas Bergeron
Sprache: Englisch

74,89 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called ¿arithmetic hyperbolic surfaces¿, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them.
After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss.
The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.
This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called ¿arithmetic hyperbolic surfaces¿, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them.
After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss.
The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.
Über den Autor

Nicolas Bergeron is a Professor at Université Pierre et Marie Curie in Paris. His research interests are in geometry and automorphic forms, in particular the topology and spectral geometry of locally symmetric spaces.

Zusammenfassung

Features profound and recent results of the spectral theory of automorphic surfaces

Provides a self-contained proof of the so-called Jacquet-Langlands correspondence

Includes an introduction to Lindenstrauss's ergodic theoretic proof of quantum unique ergodicity for compact arithmetic surfaces, for which he was awarded a Fields medal in 2010

Includes supplementary material: [...]

Inhaltsverzeichnis
Preface.- Introduction.- Arithmetic Hyperbolic Surfaces.- Spectral Decomposition.- Maass Forms.- The Trace Formula.- Multiplicity of lambda1 and the Selberg Conjecture.- L-Functions and the Selberg Conjecture.- Jacquet-Langlands Correspondence.- Arithmetic Quantum Unique Ergodicity.- Appendices.- References.- Index of notation.- Index.- Index of names.
Details
Erscheinungsjahr: 2016
Fachbereich: Geometrie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Universitext
Inhalt: xiii
370 S.
8 farbige Illustr.
370 p. 8 illus. in color.
ISBN-13: 9783319276649
ISBN-10: 3319276646
Sprache: Englisch
Herstellernummer: 978-3-319-27664-9
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Bergeron, Nicolas
Auflage: 1st ed. 2016
Hersteller: Springer International Publishing
Springer International Publishing AG
Universitext
Maße: 235 x 155 x 20 mm
Von/Mit: Nicolas Bergeron
Erscheinungsdatum: 02.03.2016
Gewicht: 0,657 kg
Artikel-ID: 104064468
Über den Autor

Nicolas Bergeron is a Professor at Université Pierre et Marie Curie in Paris. His research interests are in geometry and automorphic forms, in particular the topology and spectral geometry of locally symmetric spaces.

Zusammenfassung

Features profound and recent results of the spectral theory of automorphic surfaces

Provides a self-contained proof of the so-called Jacquet-Langlands correspondence

Includes an introduction to Lindenstrauss's ergodic theoretic proof of quantum unique ergodicity for compact arithmetic surfaces, for which he was awarded a Fields medal in 2010

Includes supplementary material: [...]

Inhaltsverzeichnis
Preface.- Introduction.- Arithmetic Hyperbolic Surfaces.- Spectral Decomposition.- Maass Forms.- The Trace Formula.- Multiplicity of lambda1 and the Selberg Conjecture.- L-Functions and the Selberg Conjecture.- Jacquet-Langlands Correspondence.- Arithmetic Quantum Unique Ergodicity.- Appendices.- References.- Index of notation.- Index.- Index of names.
Details
Erscheinungsjahr: 2016
Fachbereich: Geometrie
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Universitext
Inhalt: xiii
370 S.
8 farbige Illustr.
370 p. 8 illus. in color.
ISBN-13: 9783319276649
ISBN-10: 3319276646
Sprache: Englisch
Herstellernummer: 978-3-319-27664-9
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Bergeron, Nicolas
Auflage: 1st ed. 2016
Hersteller: Springer International Publishing
Springer International Publishing AG
Universitext
Maße: 235 x 155 x 20 mm
Von/Mit: Nicolas Bergeron
Erscheinungsdatum: 02.03.2016
Gewicht: 0,657 kg
Artikel-ID: 104064468
Warnhinweis