Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
The Deep Learning with PyTorch Workshop
Build deep neural networks and artificial intelligence applications with PyTorch
Taschenbuch von Hyatt Saleh
Sprache: Englisch

49,45 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Get a head start in the world of AI and deep learning by developing your skills with PyTorch
Key Features

Learn how to define your own network architecture in deep learning

Implement helpful methods to create and train a model using PyTorch syntax

Discover how intelligent applications using features like image recognition and speech recognition really process your data

Book Description

Want to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you're starting from scratch.

It's no surprise that deep learning's popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you'll use PyTorch to understand the complexity of neural network architectures.

The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You'll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you'll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues.

By the end of this book, you'll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps.

What you will learn

Explore the different applications of deep learning

Understand the PyTorch approach to building neural networks

Create and train your very own perceptron using PyTorch

Solve regression problems using artificial neural networks (ANNs)

Handle computer vision problems with convolutional neural networks (CNNs)

Perform language translation tasks using recurrent neural networks (RNNs)

Who this book is for

This deep learning book is ideal for anyone who wants to create and train deep learning models using PyTorch. A solid understanding of the Python programming language and its packages will help you grasp the topics covered in the book more quickly.
Get a head start in the world of AI and deep learning by developing your skills with PyTorch
Key Features

Learn how to define your own network architecture in deep learning

Implement helpful methods to create and train a model using PyTorch syntax

Discover how intelligent applications using features like image recognition and speech recognition really process your data

Book Description

Want to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you're starting from scratch.

It's no surprise that deep learning's popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you'll use PyTorch to understand the complexity of neural network architectures.

The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You'll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you'll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues.

By the end of this book, you'll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps.

What you will learn

Explore the different applications of deep learning

Understand the PyTorch approach to building neural networks

Create and train your very own perceptron using PyTorch

Solve regression problems using artificial neural networks (ANNs)

Handle computer vision problems with convolutional neural networks (CNNs)

Perform language translation tasks using recurrent neural networks (RNNs)

Who this book is for

This deep learning book is ideal for anyone who wants to create and train deep learning models using PyTorch. A solid understanding of the Python programming language and its packages will help you grasp the topics covered in the book more quickly.
Über den Autor
Hyatt Saleh discovered the importance of data analysis for understanding and solving real-life problems after graduating from college as a business administrator. Since then, as a self-taught person, she not only works as a machine learning freelancer for many companies globally, but has also founded an artificial intelligence company that aims to optimize everyday processes. She has also authored the book Machine Learning Fundamentals, by Packt Publishing.
Details
Erscheinungsjahr: 2020
Fachbereich: Programmiersprachen
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781838989217
ISBN-10: 1838989218
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Saleh, Hyatt
Hersteller: Packt Publishing
Maße: 235 x 191 x 18 mm
Von/Mit: Hyatt Saleh
Erscheinungsdatum: 20.07.2020
Gewicht: 0,618 kg
Artikel-ID: 118784835
Über den Autor
Hyatt Saleh discovered the importance of data analysis for understanding and solving real-life problems after graduating from college as a business administrator. Since then, as a self-taught person, she not only works as a machine learning freelancer for many companies globally, but has also founded an artificial intelligence company that aims to optimize everyday processes. She has also authored the book Machine Learning Fundamentals, by Packt Publishing.
Details
Erscheinungsjahr: 2020
Fachbereich: Programmiersprachen
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781838989217
ISBN-10: 1838989218
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Saleh, Hyatt
Hersteller: Packt Publishing
Maße: 235 x 191 x 18 mm
Von/Mit: Hyatt Saleh
Erscheinungsdatum: 20.07.2020
Gewicht: 0,618 kg
Artikel-ID: 118784835
Warnhinweis