Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Machine Learning Automation with TPOT
Build, validate, and deploy fully automated machine learning models with Python
Taschenbuch von Dario Rade¿i¿
Sprache: Englisch

53,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Discover how TPOT can be used to handle automation in machine learning and explore the different types of tasks that TPOT can automate

Key Features:Understand parallelism and how to achieve it in Python.
Learn how to use neurons, layers, and activation functions and structure an artificial neural network.
Tune TPOT models to ensure optimum performance on previously unseen data.

Book Description:
The automation of machine learning tasks allows developers more time to focus on the usability and reactivity of the software powered by machine learning models. TPOT is a Python automated machine learning tool used for optimizing machine learning pipelines using genetic programming. Automating machine learning with TPOT enables individuals and companies to develop production-ready machine learning models cheaper and faster than with traditional methods.

With this practical guide to AutoML, developers working with Python on machine learning tasks will be able to put their knowledge to work and become productive quickly. You'll adopt a hands-on approach to learning the implementation of AutoML and associated methodologies. Complete with step-by-step explanations of essential concepts, practical examples, and self-assessment questions, this book will show you how to build automated classification and regression models and compare their performance to custom-built models. As you advance, you'll also develop state-of-the-art models using only a couple of lines of code and see how those models outperform all of your previous models on the same datasets.

By the end of this book, you'll have gained the confidence to implement AutoML techniques in your organization on a production level.

What You Will Learn:Get to grips with building automated machine learning models
Build classification and regression models with impressive accuracy in a short time
Develop neural network classifiers with AutoML techniques
Compare AutoML models with traditional, manually developed models on the same datasets
Create robust, production-ready models
Evaluate automated classification models based on metrics such as accuracy, recall, precision, and f1-score
Get hands-on with deployment using Flask-RESTful on localhost

Who this book is for:
Data scientists, data analysts, and software developers who are new to machine learning and want to use it in their applications will find this book useful. This book is also for business users looking to automate business tasks with machine learning. Working knowledge of the Python programming language and beginner-level understanding of machine learning are necessary to get started.
Discover how TPOT can be used to handle automation in machine learning and explore the different types of tasks that TPOT can automate

Key Features:Understand parallelism and how to achieve it in Python.
Learn how to use neurons, layers, and activation functions and structure an artificial neural network.
Tune TPOT models to ensure optimum performance on previously unseen data.

Book Description:
The automation of machine learning tasks allows developers more time to focus on the usability and reactivity of the software powered by machine learning models. TPOT is a Python automated machine learning tool used for optimizing machine learning pipelines using genetic programming. Automating machine learning with TPOT enables individuals and companies to develop production-ready machine learning models cheaper and faster than with traditional methods.

With this practical guide to AutoML, developers working with Python on machine learning tasks will be able to put their knowledge to work and become productive quickly. You'll adopt a hands-on approach to learning the implementation of AutoML and associated methodologies. Complete with step-by-step explanations of essential concepts, practical examples, and self-assessment questions, this book will show you how to build automated classification and regression models and compare their performance to custom-built models. As you advance, you'll also develop state-of-the-art models using only a couple of lines of code and see how those models outperform all of your previous models on the same datasets.

By the end of this book, you'll have gained the confidence to implement AutoML techniques in your organization on a production level.

What You Will Learn:Get to grips with building automated machine learning models
Build classification and regression models with impressive accuracy in a short time
Develop neural network classifiers with AutoML techniques
Compare AutoML models with traditional, manually developed models on the same datasets
Create robust, production-ready models
Evaluate automated classification models based on metrics such as accuracy, recall, precision, and f1-score
Get hands-on with deployment using Flask-RESTful on localhost

Who this book is for:
Data scientists, data analysts, and software developers who are new to machine learning and want to use it in their applications will find this book useful. This book is also for business users looking to automate business tasks with machine learning. Working knowledge of the Python programming language and beginner-level understanding of machine learning are necessary to get started.
Über den Autor
Dario Rade¿i¿ is a full-time data scientist at Neos, in Croatia, a part-time data storyteller at Appsilon, in Poland, and a business owner. Dario has a master's degree in data science and years of experience in data science and machine learning, with an emphasis on automated machine learning. He is also a top writer in artificial intelligence on Medium and the owner of a data science blog called Better Data Science.
Details
Erscheinungsjahr: 2021
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781800567887
ISBN-10: 180056788X
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Rade¿i¿, Dario
Hersteller: Packt Publishing
Maße: 235 x 191 x 15 mm
Von/Mit: Dario Rade¿i¿
Erscheinungsdatum: 07.05.2021
Gewicht: 0,51 kg
Artikel-ID: 120857691
Über den Autor
Dario Rade¿i¿ is a full-time data scientist at Neos, in Croatia, a part-time data storyteller at Appsilon, in Poland, and a business owner. Dario has a master's degree in data science and years of experience in data science and machine learning, with an emphasis on automated machine learning. He is also a top writer in artificial intelligence on Medium and the owner of a data science blog called Better Data Science.
Details
Erscheinungsjahr: 2021
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781800567887
ISBN-10: 180056788X
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Rade¿i¿, Dario
Hersteller: Packt Publishing
Maße: 235 x 191 x 15 mm
Von/Mit: Dario Rade¿i¿
Erscheinungsdatum: 07.05.2021
Gewicht: 0,51 kg
Artikel-ID: 120857691
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte