Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
This is the first full-length book on the major theme of symmetry in graphs. Forming part of algebraic graph theory, this fast-growing field is concerned with the study of highly symmetric graphs, particularly vertex-transitive graphs, and other combinatorial structures, primarily by group-theoretic techniques. In practice the street goes both ways and these investigations shed new light on permutation groups and related algebraic structures. The book assumes a first course in graph theory and group theory but no specialized knowledge of the theory of permutation groups or vertex-transitive graphs. It begins with the basic material before introducing the field's major problems and most active research themes in order to motivate the detailed discussion of individual topics that follows. Featuring many examples and over 450 exercises, it is an essential introduction to the field for graduate students and a valuable addition to any algebraic graph theorist's bookshelf.
This is the first full-length book on the major theme of symmetry in graphs. Forming part of algebraic graph theory, this fast-growing field is concerned with the study of highly symmetric graphs, particularly vertex-transitive graphs, and other combinatorial structures, primarily by group-theoretic techniques. In practice the street goes both ways and these investigations shed new light on permutation groups and related algebraic structures. The book assumes a first course in graph theory and group theory but no specialized knowledge of the theory of permutation groups or vertex-transitive graphs. It begins with the basic material before introducing the field's major problems and most active research themes in order to motivate the detailed discussion of individual topics that follows. Featuring many examples and over 450 exercises, it is an essential introduction to the field for graduate students and a valuable addition to any algebraic graph theorist's bookshelf.
Über den Autor
Ted Dobson is Professor at the University of Primorska, Slovenia.
Inhaltsverzeichnis
1. Introduction and constructions; 2. The Petersen graph, blocks, and actions of A5; 3. Some motivating problems; 4. Graphs with imprimitive automorphism group; 5. The end of the beginning; 6. Other classes of graphs; 7. The Cayley isomorphism problem; 8. Automorphism groups of vertex-transitive graphs; 9. Classifying vertex-transitive graphs; 10. Symmetric graphs; 11. Hamiltonicity; 12. Semiregularity; 13. Graphs with other types of symmetry: Half-arc-transitive graphs and semisymmetric graphs; 14. Fare you well; References; Author index; Index of graphs; Index of symbols;Index of terms.
Details
Erscheinungsjahr: 2022
Fachbereich: Allgemeines
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9781108429061
ISBN-10: 1108429068
Sprache: Englisch
Einband: Gebunden
Autor: Dobson, Ted
Malni¿, Aleksander
Maru¿i¿, Dragan
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 235 x 157 x 33 mm
Von/Mit: Ted Dobson (u. a.)
Erscheinungsdatum: 26.04.2022
Gewicht: 0,904 kg
Artikel-ID: 120951897

Ähnliche Produkte