Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Deep Learning Techniques for Music Generation
Buch von Jean-Pierre Briot (u. a.)
Sprache: Englisch

126,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure.

The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.
This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure.

The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.
Zusammenfassung

Authors' analysis based on five dimensions: objective, representation, architecture, challenge, and strategy

Important application of deep learning, for AI researchers and composers

Research was conducted within the EU Flow Machines project

Inhaltsverzeichnis
Introduction.- Method.- Objective.- Representation.- Architecture.- Challenge and Strategy.- Analysis.- Discussion and Conclusion.
Details
Erscheinungsjahr: 2019
Fachbereich: Anwendungs-Software
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xxviii
284 S.
52 s/w Illustr.
91 farbige Illustr.
284 p. 143 illus.
91 illus. in color.
ISBN-13: 9783319701622
ISBN-10: 3319701622
Sprache: Englisch
Herstellernummer: 978-3-319-70162-2
Einband: Gebunden
Autor: Briot, Jean-Pierre
Pachet, François-David
Hadjeres, Gaëtan
Auflage: 1st edition 2020
Hersteller: Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 23 mm
Von/Mit: Jean-Pierre Briot (u. a.)
Erscheinungsdatum: 20.11.2019
Gewicht: 0,635 kg
Artikel-ID: 111088755
Zusammenfassung

Authors' analysis based on five dimensions: objective, representation, architecture, challenge, and strategy

Important application of deep learning, for AI researchers and composers

Research was conducted within the EU Flow Machines project

Inhaltsverzeichnis
Introduction.- Method.- Objective.- Representation.- Architecture.- Challenge and Strategy.- Analysis.- Discussion and Conclusion.
Details
Erscheinungsjahr: 2019
Fachbereich: Anwendungs-Software
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xxviii
284 S.
52 s/w Illustr.
91 farbige Illustr.
284 p. 143 illus.
91 illus. in color.
ISBN-13: 9783319701622
ISBN-10: 3319701622
Sprache: Englisch
Herstellernummer: 978-3-319-70162-2
Einband: Gebunden
Autor: Briot, Jean-Pierre
Pachet, François-David
Hadjeres, Gaëtan
Auflage: 1st edition 2020
Hersteller: Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 23 mm
Von/Mit: Jean-Pierre Briot (u. a.)
Erscheinungsdatum: 20.11.2019
Gewicht: 0,635 kg
Artikel-ID: 111088755
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte