Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Sturmian Theory for Ordinary Differential Equations
Taschenbuch von William T. Reid
Sprache: Englisch

53,49 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
A major portion of the study of the qualitative nature of solutions of differential equations may be traced to the famous 1836 paper of Sturm [1), (here, as elsewhere throughout this manuscript, numbers in square brackets refer to the bibliography at the end of this volume), dealing with oscilla­ tion and comparison theorems for linear homogeneous second order ordinary differential equations. The associated work of Liouville introduced a type of boundary problem known as a "Sturm-Liouville problem", involving, in particular, an introduction to the study of the asymptotic behavior of solu­ tions of linear second order differential equations by the use of integral equations. In the quarter century following the 1891 Gottingen dissertation [1) of Maxime Bacher (1867-1918), he was instru­ mental in the elaboration and extension of the oscillation, separation, and comparison theorems of Sturm, both in his many papers on the subject and his lectures at the Sorbonne in 1913-1914, which were subsequently published as his famous Leaons sur Zes methodes de Sturm [7).
A major portion of the study of the qualitative nature of solutions of differential equations may be traced to the famous 1836 paper of Sturm [1), (here, as elsewhere throughout this manuscript, numbers in square brackets refer to the bibliography at the end of this volume), dealing with oscilla­ tion and comparison theorems for linear homogeneous second order ordinary differential equations. The associated work of Liouville introduced a type of boundary problem known as a "Sturm-Liouville problem", involving, in particular, an introduction to the study of the asymptotic behavior of solu­ tions of linear second order differential equations by the use of integral equations. In the quarter century following the 1891 Gottingen dissertation [1) of Maxime Bacher (1867-1918), he was instru­ mental in the elaboration and extension of the oscillation, separation, and comparison theorems of Sturm, both in his many papers on the subject and his lectures at the Sorbonne in 1913-1914, which were subsequently published as his famous Leaons sur Zes methodes de Sturm [7).
Inhaltsverzeichnis
I. Historical Prologue.- 1. Introduction.- 2. Methods Based Upon Variational Principles.- 3. Historical Comments on Terminology.- II. Sturmian Theory for Real Linear Homogeneous Second Order Ordinary Differential Equations on a Compact Interval.- 1. Introduction.- 2. Preliminary Properties of Solutions of (1.1).- 3. The Classical Oscillation and Comparison Theorems of Sturm.- 4. Related Oscillation and Comparison Theorems.- 5. Sturmian Differential Systems.- 6. Polar Coordinate Transformations.- 7. Transformations for Differential Equations and Systems.- 8. Variational Properties of Solutions of (1.1).- 9. Comparison Theorems.- 10. Morse Fundamental Quadratic Forms for Conjugate and Focal Points.- 11. Survey of Recent Literature.- 12. Topics and Exercises.- III. Self-Adjoint Boundary Problems Associated with Second Order Linear Differential Equations.- 1. A Canonical Form for Boundary Conditions.- 2 Extremum Problems for Self-Adjoint Systems.- 3. Comparison Theorems.- 4. Comments on Recent Literature.- 5. Topics and Exercises.- IV. Oscillation Theory on a Non-Compact Interval.- 1. Introduction.- 2. Integral Criteria for Oscillation and Non-Oscillation.- 3. Principal Solutions.- 4. Theory of Singular Quadratic Functionals.- 5. Interrelations Between Oscillation Criteria and Boundary Problems.- 6. Strong and Conditional Oscillation.- 7. A Class of Sturmian Problems on a Non-Compact Interval.- 8. Topics and Exercises.- V. Sturmian Theory for Differential Systems.- 1. Introduction.- 2. Special Examples.- 3. Preliminary Properties of Solutions of (2.5).- 4. Associated Riccati Matrix Differential Equations.- 5. Normality and Abnormality.- 6. Variational Properties of Solutions of (3.1).- 7. Comparison Theorems.- 8. Morse Fundamental Hermitian Forms.- 9. Generalized Polar Coordinate Transformations for Matrix Differential Systems.- 10. Matrix Oscillation Theory.- 11. Principal Solutions.- 12. Comments on Systems (3.1) Which are Not Identically Normal.- 13. Comments on the Literature on Oscillation Theory for Hamiltonian Systems (3.1).- 14. Higher Order Differential Equations.- 15. Topics and Exercises.- VI. Self-Adjoint Boundary Problems.- 1. Introduction.- 2. Normality and Abnormality of Boundary Problems.- 3. Self-Adjoint Boundary Problems Associated with (B).- 4. Comparison Theorems.- 5. Treatment of Self-Adjoint Boundary Problems by Matrix Oscillation Theory.- 6. Notes and Comments on the Literature.- 7. Topics and Exercises.- VII. A Class of Definite Boundary Problems.- 1. Introduction.- 2. Definitely Self-Adjoint Boundary Problems.- 3. Comments on Related Literature.- 4. Topics and Exercises.- VIII. Generalizations of Sturmian Theory.- 1. Introduction.- 2. Integro-Differential Boundary Problems.- 3. A Class of Generalized Differential Equations.- 4. Hestenes Quadratic Form Theory in a Hilbert Space.- 5. The Weinstein Method of Intermediate Problems.- 6. Oscillation Phenomena for Hamiltonian Systems in a B*-Algebra.- 7. Topological Interpretations of the Sturmian Theorems.- Abbreviations for Mathematical Publications Most Frequently Used.- Special Symbols.- Author Index.
Details
Erscheinungsjahr: 1981
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Applied Mathematical Sciences
Inhalt: xvi
560 S.
ISBN-13: 9780387905426
ISBN-10: 0387905421
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Reid, William T.
Bearbeitung: Herdman, T.
Ahlbrandt, C.
Burns, J.
Auflage: Softcover reprint of the original 1st ed. 1980
Hersteller: Springer New York
Springer US, New York, N.Y.
Applied Mathematical Sciences
Maße: 235 x 155 x 32 mm
Von/Mit: William T. Reid
Erscheinungsdatum: 20.02.1981
Gewicht: 0,867 kg
Artikel-ID: 101716571
Inhaltsverzeichnis
I. Historical Prologue.- 1. Introduction.- 2. Methods Based Upon Variational Principles.- 3. Historical Comments on Terminology.- II. Sturmian Theory for Real Linear Homogeneous Second Order Ordinary Differential Equations on a Compact Interval.- 1. Introduction.- 2. Preliminary Properties of Solutions of (1.1).- 3. The Classical Oscillation and Comparison Theorems of Sturm.- 4. Related Oscillation and Comparison Theorems.- 5. Sturmian Differential Systems.- 6. Polar Coordinate Transformations.- 7. Transformations for Differential Equations and Systems.- 8. Variational Properties of Solutions of (1.1).- 9. Comparison Theorems.- 10. Morse Fundamental Quadratic Forms for Conjugate and Focal Points.- 11. Survey of Recent Literature.- 12. Topics and Exercises.- III. Self-Adjoint Boundary Problems Associated with Second Order Linear Differential Equations.- 1. A Canonical Form for Boundary Conditions.- 2 Extremum Problems for Self-Adjoint Systems.- 3. Comparison Theorems.- 4. Comments on Recent Literature.- 5. Topics and Exercises.- IV. Oscillation Theory on a Non-Compact Interval.- 1. Introduction.- 2. Integral Criteria for Oscillation and Non-Oscillation.- 3. Principal Solutions.- 4. Theory of Singular Quadratic Functionals.- 5. Interrelations Between Oscillation Criteria and Boundary Problems.- 6. Strong and Conditional Oscillation.- 7. A Class of Sturmian Problems on a Non-Compact Interval.- 8. Topics and Exercises.- V. Sturmian Theory for Differential Systems.- 1. Introduction.- 2. Special Examples.- 3. Preliminary Properties of Solutions of (2.5).- 4. Associated Riccati Matrix Differential Equations.- 5. Normality and Abnormality.- 6. Variational Properties of Solutions of (3.1).- 7. Comparison Theorems.- 8. Morse Fundamental Hermitian Forms.- 9. Generalized Polar Coordinate Transformations for Matrix Differential Systems.- 10. Matrix Oscillation Theory.- 11. Principal Solutions.- 12. Comments on Systems (3.1) Which are Not Identically Normal.- 13. Comments on the Literature on Oscillation Theory for Hamiltonian Systems (3.1).- 14. Higher Order Differential Equations.- 15. Topics and Exercises.- VI. Self-Adjoint Boundary Problems.- 1. Introduction.- 2. Normality and Abnormality of Boundary Problems.- 3. Self-Adjoint Boundary Problems Associated with (B).- 4. Comparison Theorems.- 5. Treatment of Self-Adjoint Boundary Problems by Matrix Oscillation Theory.- 6. Notes and Comments on the Literature.- 7. Topics and Exercises.- VII. A Class of Definite Boundary Problems.- 1. Introduction.- 2. Definitely Self-Adjoint Boundary Problems.- 3. Comments on Related Literature.- 4. Topics and Exercises.- VIII. Generalizations of Sturmian Theory.- 1. Introduction.- 2. Integro-Differential Boundary Problems.- 3. A Class of Generalized Differential Equations.- 4. Hestenes Quadratic Form Theory in a Hilbert Space.- 5. The Weinstein Method of Intermediate Problems.- 6. Oscillation Phenomena for Hamiltonian Systems in a B*-Algebra.- 7. Topological Interpretations of the Sturmian Theorems.- Abbreviations for Mathematical Publications Most Frequently Used.- Special Symbols.- Author Index.
Details
Erscheinungsjahr: 1981
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Applied Mathematical Sciences
Inhalt: xvi
560 S.
ISBN-13: 9780387905426
ISBN-10: 0387905421
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Reid, William T.
Bearbeitung: Herdman, T.
Ahlbrandt, C.
Burns, J.
Auflage: Softcover reprint of the original 1st ed. 1980
Hersteller: Springer New York
Springer US, New York, N.Y.
Applied Mathematical Sciences
Maße: 235 x 155 x 32 mm
Von/Mit: William T. Reid
Erscheinungsdatum: 20.02.1981
Gewicht: 0,867 kg
Artikel-ID: 101716571
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte