Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
34,99 €
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Kategorien:
Beschreibung
Das Buch gibt eine Einführung in weiterführende Themengebiete der stochastischen Prozesse und der zugehörigen stochastischen Analysis und verbindet diese mit einer fundierten Darstellung von Grundlagen der Finanzmathematik. Es ist inhaltlich weitreichend und legt gleichzeitig viel Wert auf gute Lesbarkeit, Motivation und Erklärung der behandelten Sachverhalte.
Finanzmathematische Fragestellungen werden zunächst im Rahmen diskreter Modelle eingeführt und dann auf zeitstetige Modelle übertragen. Die grundlegende Konstruktion des stochastischen Integrals und die zugehörige Martingaltheorie liefern fundamentale Methoden der Theorie stochastischer Prozesse zur Konstruktion von geeigneten stochastischen Modellen der Finanzmathematik, z.B. mit Hilfe von stochastischen Differentialgleichungen. Zentrale Resultate der stochastischen Analysis wie Itô -Formel, Satz von Girsanov und Martingaldarstellungssätze erhalten in der Finanzmathematik grundlegende Bedeutung, z.B. für die risiko-neutrale Bewertungsformel (Black-Scholes Formel) oder die Frage nach der Hedgebarkeit von Optionen und der Vollständigkeit von Marktmodellen. Kapitel zur Bewertung von Optionen in vollständigen und nichtvollständigen Märkten und zur Bestimmung optimaler Hedgingstrategien schließen die Thematik ab.
Vorausgesetzt werden fortgeschrittene Kenntnisse der Wahrscheinlichkeitstheorie, insbesondere zu zeitdiskreten Prozessen (Martingale, Markov-Ketten) sowie zeitstetigen Prozessen (Brownsche Bewegung, Lévy-Prozesse, Prozesse mit unabhängigen Zuwächsen, Markovprozesse). Das Buch ist somit für fortgeschrittene Studierende als begleitende Lektüre sowie für Dozenten als Grundlage für eigene Lehrveranstaltungen geeignet.
Das Buch gibt eine Einführung in weiterführende Themengebiete der stochastischen Prozesse und der zugehörigen stochastischen Analysis und verbindet diese mit einer fundierten Darstellung von Grundlagen der Finanzmathematik. Es ist inhaltlich weitreichend und legt gleichzeitig viel Wert auf gute Lesbarkeit, Motivation und Erklärung der behandelten Sachverhalte.
Finanzmathematische Fragestellungen werden zunächst im Rahmen diskreter Modelle eingeführt und dann auf zeitstetige Modelle übertragen. Die grundlegende Konstruktion des stochastischen Integrals und die zugehörige Martingaltheorie liefern fundamentale Methoden der Theorie stochastischer Prozesse zur Konstruktion von geeigneten stochastischen Modellen der Finanzmathematik, z.B. mit Hilfe von stochastischen Differentialgleichungen. Zentrale Resultate der stochastischen Analysis wie Itô -Formel, Satz von Girsanov und Martingaldarstellungssätze erhalten in der Finanzmathematik grundlegende Bedeutung, z.B. für die risiko-neutrale Bewertungsformel (Black-Scholes Formel) oder die Frage nach der Hedgebarkeit von Optionen und der Vollständigkeit von Marktmodellen. Kapitel zur Bewertung von Optionen in vollständigen und nichtvollständigen Märkten und zur Bestimmung optimaler Hedgingstrategien schließen die Thematik ab.
Vorausgesetzt werden fortgeschrittene Kenntnisse der Wahrscheinlichkeitstheorie, insbesondere zu zeitdiskreten Prozessen (Martingale, Markov-Ketten) sowie zeitstetigen Prozessen (Brownsche Bewegung, Lévy-Prozesse, Prozesse mit unabhängigen Zuwächsen, Markovprozesse). Das Buch ist somit für fortgeschrittene Studierende als begleitende Lektüre sowie für Dozenten als Grundlage für eigene Lehrveranstaltungen geeignet.
Über den Autor
Prof. Dr. Ludger Rüschendorf ist seit 1993 Professor an der Universität Freiburg auf dem Gebiet der mathematischen Stochastik. Zuvor lehrte und forschte er an den Universitäten Hamburg, Aachen, Freiburg und Münster.
Zusammenfassung
Verbindet die Theorie der stochastischen Prozesse mit den Grundlagen der Finanzmathematik
Inhaltlich sehr umfassend, zugleich gut lesbar und motiviert
Geeignet für fortgeschrittene Studierende als begleitende und weiterführende Lektüre
Geeignet für Dozenten als Basis für eigene Lehrveranstaltungen
Inhaltsverzeichnis
Optionspreisbestimmung in Modellen in diskreter Zeit.- Skorohodscher Einbettungssatz und Donsker-Theorem.- Stochastische Integration.- Elemente der stochastischen Analysis.- Optionspreise in vollständigen und unvollständigen Märkten.- Nutzenoptimierung, Minimumdistanz-Martingalmaße und Nutzenindiff.- Varianz-minimales Hedgen.
Details
Erscheinungsjahr: | 2020 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
x
294 S. 24 s/w Illustr. 294 S. 24 Abb. |
ISBN-13: | 9783662619728 |
ISBN-10: | 3662619725 |
Sprache: | Deutsch |
Herstellernummer: | 978-3-662-61972-8 |
Einband: | Kartoniert / Broschiert |
Autor: | Rüschendorf, Ludger |
Auflage: | 1. Auflage 2020 |
Hersteller: |
Springer-Verlag GmbH
Springer Berlin Heidelberg |
Verantwortliche Person für die EU: | Springer Spektrum in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 17 mm |
Von/Mit: | Ludger Rüschendorf |
Erscheinungsdatum: | 24.11.2020 |
Gewicht: | 0,464 kg |