Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Stochastic Volatility and Realized Stochastic Volatility Models
Taschenbuch von Makoto Takahashi (u. a.)
Sprache: Englisch

51,20 €*

-13 % UVP 58,84 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 4-7 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
This treatise delves into the latest advancements in stochastic volatility models, highlighting the utilization of Markov chain Monte Carlo simulations for estimating model parameters and forecasting the volatility and quantiles of financial asset returns. The modeling of financial time series volatility constitutes a crucial aspect of finance, as it plays a vital role in predicting return distributions and managing risks. Among the various econometric models available, the stochastic volatility model has been a popular choice, particularly in comparison to other models, such as GARCH models, as it has demonstrated superior performance in previous empirical studies in terms of fit, forecasting volatility, and evaluating tail risk measures such as Value-at-Risk and Expected Shortfall.

The book also explores an extension of the basic stochastic volatility model, incorporating a skewed return error distribution and a realized volatility measurement equation. The concept of realized volatility, a newly established estimator of volatility using intraday returns data, is introduced, and a comprehensive description of the resulting realized stochastic volatility model is provided. The text contains a thorough explanation of several efficient sampling algorithms for latent log volatilities, as well as an illustration of parameter estimation and volatility prediction through empirical studies utilizing various asset return data, including the yen/US dollar exchange rate, the Dow Jones Industrial Average, and the Nikkei 225 stock index.

This publication is highly recommended for readers with an interest in the latest developments in stochastic volatility models and realized stochastic volatility models, particularly in regards to financial risk management.
This treatise delves into the latest advancements in stochastic volatility models, highlighting the utilization of Markov chain Monte Carlo simulations for estimating model parameters and forecasting the volatility and quantiles of financial asset returns. The modeling of financial time series volatility constitutes a crucial aspect of finance, as it plays a vital role in predicting return distributions and managing risks. Among the various econometric models available, the stochastic volatility model has been a popular choice, particularly in comparison to other models, such as GARCH models, as it has demonstrated superior performance in previous empirical studies in terms of fit, forecasting volatility, and evaluating tail risk measures such as Value-at-Risk and Expected Shortfall.

The book also explores an extension of the basic stochastic volatility model, incorporating a skewed return error distribution and a realized volatility measurement equation. The concept of realized volatility, a newly established estimator of volatility using intraday returns data, is introduced, and a comprehensive description of the resulting realized stochastic volatility model is provided. The text contains a thorough explanation of several efficient sampling algorithms for latent log volatilities, as well as an illustration of parameter estimation and volatility prediction through empirical studies utilizing various asset return data, including the yen/US dollar exchange rate, the Dow Jones Industrial Average, and the Nikkei 225 stock index.

This publication is highly recommended for readers with an interest in the latest developments in stochastic volatility models and realized stochastic volatility models, particularly in regards to financial risk management.
Über den Autor
Makoto Takahashi, Hosei University, Tokyo, Japan.
Toshiaki Watanabe, Hitotsubashi University, Tokyo, Japan.
Yasuhiro Omori, University of Tokyo, Tokyo, Japan.
Zusammenfassung

Describes an MCMC estimation method for stochastic volatility models and realized stochastic volatility models

Focuses on the realized stochastic volatility model

Provides several applications with real financial datasets

Inhaltsverzeichnis

1 Introduction.- 2 Stochastic Volatility Model.- 3 Asymmetric Stochastic Volatility Model.- 4 Stochastic Volatility Model with Generalized Hyperbolic Skew Student's t Error.- 5 Realized Stochastic Volatility Model.

Details
Erscheinungsjahr: 2023
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: viii
113 S.
15 s/w Illustr.
26 farbige Illustr.
113 p. 41 illus.
26 illus. in color.
ISBN-13: 9789819909346
ISBN-10: 9819909341
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Takahashi, Makoto
Watanabe, Toshiaki
Omori, Yasuhiro
Auflage: 1st edition 2023
Hersteller: Springer Singapore
Springer Nature Singapore
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 7 mm
Von/Mit: Makoto Takahashi (u. a.)
Erscheinungsdatum: 19.04.2023
Gewicht: 0,224 kg
Artikel-ID: 126542276
Über den Autor
Makoto Takahashi, Hosei University, Tokyo, Japan.
Toshiaki Watanabe, Hitotsubashi University, Tokyo, Japan.
Yasuhiro Omori, University of Tokyo, Tokyo, Japan.
Zusammenfassung

Describes an MCMC estimation method for stochastic volatility models and realized stochastic volatility models

Focuses on the realized stochastic volatility model

Provides several applications with real financial datasets

Inhaltsverzeichnis

1 Introduction.- 2 Stochastic Volatility Model.- 3 Asymmetric Stochastic Volatility Model.- 4 Stochastic Volatility Model with Generalized Hyperbolic Skew Student's t Error.- 5 Realized Stochastic Volatility Model.

Details
Erscheinungsjahr: 2023
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: viii
113 S.
15 s/w Illustr.
26 farbige Illustr.
113 p. 41 illus.
26 illus. in color.
ISBN-13: 9789819909346
ISBN-10: 9819909341
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Takahashi, Makoto
Watanabe, Toshiaki
Omori, Yasuhiro
Auflage: 1st edition 2023
Hersteller: Springer Singapore
Springer Nature Singapore
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 7 mm
Von/Mit: Makoto Takahashi (u. a.)
Erscheinungsdatum: 19.04.2023
Gewicht: 0,224 kg
Artikel-ID: 126542276
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte