Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Seventeenth-Century Indivisibles Revisited
Buch von Vincent Jullien
Sprache: Englisch

103,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
The tremendous success of indivisibles methods in geometry in the seventeenth century, responds to a vast project: installation of infinity in mathematics. The pathways by the authors are very diverse, as are the characterizations of indivisibles, but there are significant factors of unity between the various doctrines of indivisible; the permanence of the language used by all authors is the strongest sign.
These efforts do not lead to the stabilization of a mathematical theory (with principles or axioms, theorems respecting these first statements, followed by applications to a set of geometric situations), one must nevertheless admire the magnitude of the results obtained by these methods and highlights the rich relationships between them and integral calculus.
The present book aims to be exhaustive since it analyzes the works of all major inventors of methods of indivisibles during the seventeenth century, from Kepler to Leibniz. It takes into account the rich existingliterature usually devoted to a single author. This book results from the joint work of a team of specialists able to browse through this entire important episode in the history of mathematics and to comment it.
The list of authors involved in indivisibles¿ field is probably sufficient to realize the richness of this attempt; one meets Kepler, Cavalieri, Galileo, Torricelli, Gregoire de Saint Vincent, Descartes, Roberval, Pascal, Tacquet, Lalouvère, Guldin, Barrow, Mengoli, Wallis, Leibniz, Newton.
The tremendous success of indivisibles methods in geometry in the seventeenth century, responds to a vast project: installation of infinity in mathematics. The pathways by the authors are very diverse, as are the characterizations of indivisibles, but there are significant factors of unity between the various doctrines of indivisible; the permanence of the language used by all authors is the strongest sign.
These efforts do not lead to the stabilization of a mathematical theory (with principles or axioms, theorems respecting these first statements, followed by applications to a set of geometric situations), one must nevertheless admire the magnitude of the results obtained by these methods and highlights the rich relationships between them and integral calculus.
The present book aims to be exhaustive since it analyzes the works of all major inventors of methods of indivisibles during the seventeenth century, from Kepler to Leibniz. It takes into account the rich existingliterature usually devoted to a single author. This book results from the joint work of a team of specialists able to browse through this entire important episode in the history of mathematics and to comment it.
The list of authors involved in indivisibles¿ field is probably sufficient to realize the richness of this attempt; one meets Kepler, Cavalieri, Galileo, Torricelli, Gregoire de Saint Vincent, Descartes, Roberval, Pascal, Tacquet, Lalouvère, Guldin, Barrow, Mengoli, Wallis, Leibniz, Newton.
Zusammenfassung

The first exhaustive study on the indivisibles

A mathematical, historical and philosophical approach of the intrusion and use of infinity in geometry during the XVIIth century

Written by a team of well known scholars, after long common work and discussions

Explains in what sense we can think about infinite, atom, continuity, indivisible in mathematics

Inhaltsverzeichnis
Introduction.- 1 From Aristotle to the Classical Age : the Debate around Indivibilism.- 2 Cavalieri's Indivisibles.- 3 Kepler, Cavalieri, Guldin.- 4 Indivisibles in the Work of Galileo.- 5 Torricelli's indivisibles.- 6 The method of indivisibles that Gregory of Saint Vincent could have used for his own quadrature of Hyperbola.- 7 Descartes and the use of indivisibles.- 8 Roberval's indivisibles.- 9 Pascal's indivisibles.- 10 Two jesuits against indivibles, Lalouvère and Tacquet.- 11 Isaac Barrow's indivisibles.- 12 The role of indivisibles in Mengoli¿s quadratures.- 13 Wallis on indivisibles.- 14 Leibniz's rigorous foundations of the method of indivisibles.- 15 Newton on indivisibles.-16 An epistemological route in the historiography on indivisibles.- 17 Archimedes and indivisibles.- 18 Indivisibles and Latitude of Forms.- 19 How to explain the use of the term indivisibles as late as 1700 for the discovery of multiple rainbows?¿
Details
Erscheinungsjahr: 2015
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Buch
Reihe: Science Networks. Historical Studies
Inhalt: vi
499 S.
161 s/w Illustr.
70 farbige Illustr.
499 p. 231 illus.
70 illus. in color.
ISBN-13: 9783319001302
ISBN-10: 3319001302
Sprache: Englisch
Herstellernummer: 86219870
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Jullien, Vincent
Redaktion: Jullien, Vincent
Herausgeber: Vincent Jullien
Hersteller: Springer International Publishing
Springer International Publishing AG
Science Networks. Historical Studies
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 241 x 160 x 33 mm
Von/Mit: Vincent Jullien
Erscheinungsdatum: 02.06.2015
Gewicht: 0,922 kg
Artikel-ID: 105190949
Zusammenfassung

The first exhaustive study on the indivisibles

A mathematical, historical and philosophical approach of the intrusion and use of infinity in geometry during the XVIIth century

Written by a team of well known scholars, after long common work and discussions

Explains in what sense we can think about infinite, atom, continuity, indivisible in mathematics

Inhaltsverzeichnis
Introduction.- 1 From Aristotle to the Classical Age : the Debate around Indivibilism.- 2 Cavalieri's Indivisibles.- 3 Kepler, Cavalieri, Guldin.- 4 Indivisibles in the Work of Galileo.- 5 Torricelli's indivisibles.- 6 The method of indivisibles that Gregory of Saint Vincent could have used for his own quadrature of Hyperbola.- 7 Descartes and the use of indivisibles.- 8 Roberval's indivisibles.- 9 Pascal's indivisibles.- 10 Two jesuits against indivibles, Lalouvère and Tacquet.- 11 Isaac Barrow's indivisibles.- 12 The role of indivisibles in Mengoli¿s quadratures.- 13 Wallis on indivisibles.- 14 Leibniz's rigorous foundations of the method of indivisibles.- 15 Newton on indivisibles.-16 An epistemological route in the historiography on indivisibles.- 17 Archimedes and indivisibles.- 18 Indivisibles and Latitude of Forms.- 19 How to explain the use of the term indivisibles as late as 1700 for the discovery of multiple rainbows?¿
Details
Erscheinungsjahr: 2015
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Buch
Reihe: Science Networks. Historical Studies
Inhalt: vi
499 S.
161 s/w Illustr.
70 farbige Illustr.
499 p. 231 illus.
70 illus. in color.
ISBN-13: 9783319001302
ISBN-10: 3319001302
Sprache: Englisch
Herstellernummer: 86219870
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Jullien, Vincent
Redaktion: Jullien, Vincent
Herausgeber: Vincent Jullien
Hersteller: Springer International Publishing
Springer International Publishing AG
Science Networks. Historical Studies
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 241 x 160 x 33 mm
Von/Mit: Vincent Jullien
Erscheinungsdatum: 02.06.2015
Gewicht: 0,922 kg
Artikel-ID: 105190949
Sicherheitshinweis