Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Quantum Geometry
A Framework for Quantum General Relativity
Taschenbuch von Margaret Prugovecki
Sprache: Englisch

178,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
The present monograph provides a systematic and basicaIly self-eontained introduetion to a mathematieal framework eapable of ineOIporating those fundamental physical premises of general relativity and quantum meehanics which are not mutually ineonsistent, and which ean be therefore retained in the unifieation of these two fundamental areas of twentieth­ eentury physics. Thus, its underlying thesis is that the equivalenee principle of classical general relativity remains true at the quantum level, where it has to be reeonciled, however, with the uneertainty principle. As will be discussed in the first as weIl as in the last chapter, eonventional methods based on classical geometries and on single Hilbert space frame­ works for quantum meehanics have failed to aehieve such a reconciliation. On the other hand, foundational arguments suggest that new types of geometries should be introdueed. The geometries proposed and studied in this monograph are referred to as quantum geometries, sinee basic quantum principles are ineorporated into their strueture from the outset. The mathematical tools used in constructing these quantum geometries are drawn from functional analysis and fibre bundle theory, and in particular from Hilbert space the­ ory, group representation theory, and modern formulations of differential geometry. The developed physical eoncepts have their roots in nonrelativistic and relativistic quantum me­ chanics in Hilbert spaee, in classical general relativity and in quantum field theory for mas­ sive and gauge fields.
The present monograph provides a systematic and basicaIly self-eontained introduetion to a mathematieal framework eapable of ineOIporating those fundamental physical premises of general relativity and quantum meehanics which are not mutually ineonsistent, and which ean be therefore retained in the unifieation of these two fundamental areas of twentieth­ eentury physics. Thus, its underlying thesis is that the equivalenee principle of classical general relativity remains true at the quantum level, where it has to be reeonciled, however, with the uneertainty principle. As will be discussed in the first as weIl as in the last chapter, eonventional methods based on classical geometries and on single Hilbert space frame­ works for quantum meehanics have failed to aehieve such a reconciliation. On the other hand, foundational arguments suggest that new types of geometries should be introdueed. The geometries proposed and studied in this monograph are referred to as quantum geometries, sinee basic quantum principles are ineorporated into their strueture from the outset. The mathematical tools used in constructing these quantum geometries are drawn from functional analysis and fibre bundle theory, and in particular from Hilbert space the­ ory, group representation theory, and modern formulations of differential geometry. The developed physical eoncepts have their roots in nonrelativistic and relativistic quantum me­ chanics in Hilbert spaee, in classical general relativity and in quantum field theory for mas­ sive and gauge fields.
Inhaltsverzeichnis
Preface. 1. Principles and Physical Interpretation of Quantum Geometries. 2. The Fibre Framework for Classical General Relativity. 3. Stochastic Quantum Mechanics on Phase Space. 4. Nonrelativistic Newton-Carton Quantum Geometries. 5. Relativistic Klein-Gordon Quantum Geometries. 6. Relativistic Dirac Quantum Geometries. 7. Relativistic Quantum Geometries for Spin-O Massive Fields. 8. Relativistic Quantum Geometries for Spin-1/2 Massive Fields. 9. Quantum Geometries for Electromagnetic Fields. 10. Classical and Quantum Geometries for Yang-Mills Fields. 11. Geometro-Stochastic Quantum Gravity. 12. Historical and Epistemological Perpectives on Developments in Relativity and Quantum Theory. References. Index.
Details
Erscheinungsjahr: 2010
Fachbereich: Theoretische Physik
Genre: Importe, Physik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Fundamental Theories of Physics
Inhalt: xiv
530 S.
ISBN-13: 9789048141340
ISBN-10: 9048141346
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Prugovecki, Margaret
Auflage: Softcover reprint of hardcover 1st ed. 1992
Hersteller: Springer Netherland
Springer Netherlands
Fundamental Theories of Physics
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 30 mm
Von/Mit: Margaret Prugovecki
Erscheinungsdatum: 15.12.2010
Gewicht: 0,82 kg
Artikel-ID: 107247011
Inhaltsverzeichnis
Preface. 1. Principles and Physical Interpretation of Quantum Geometries. 2. The Fibre Framework for Classical General Relativity. 3. Stochastic Quantum Mechanics on Phase Space. 4. Nonrelativistic Newton-Carton Quantum Geometries. 5. Relativistic Klein-Gordon Quantum Geometries. 6. Relativistic Dirac Quantum Geometries. 7. Relativistic Quantum Geometries for Spin-O Massive Fields. 8. Relativistic Quantum Geometries for Spin-1/2 Massive Fields. 9. Quantum Geometries for Electromagnetic Fields. 10. Classical and Quantum Geometries for Yang-Mills Fields. 11. Geometro-Stochastic Quantum Gravity. 12. Historical and Epistemological Perpectives on Developments in Relativity and Quantum Theory. References. Index.
Details
Erscheinungsjahr: 2010
Fachbereich: Theoretische Physik
Genre: Importe, Physik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Fundamental Theories of Physics
Inhalt: xiv
530 S.
ISBN-13: 9789048141340
ISBN-10: 9048141346
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Prugovecki, Margaret
Auflage: Softcover reprint of hardcover 1st ed. 1992
Hersteller: Springer Netherland
Springer Netherlands
Fundamental Theories of Physics
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 30 mm
Von/Mit: Margaret Prugovecki
Erscheinungsdatum: 15.12.2010
Gewicht: 0,82 kg
Artikel-ID: 107247011
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte