Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Random Matrices and Non-Commutative Probability
Buch von Arup Bose
Sprache: Englisch

230,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful.

Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability.

Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants.

Free cumulants are introduced through the Möbius function.

Free product probability spaces are constructed using free cumulants.

Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed.

Convergence of the empirical spectral distribution is discussed for symmetric matrices.

Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices.

Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices.

Exercises, at advanced undergraduate and graduate level, are provided in each chapter.
This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful.

Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability.

Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants.

Free cumulants are introduced through the Möbius function.

Free product probability spaces are constructed using free cumulants.

Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed.

Convergence of the empirical spectral distribution is discussed for symmetric matrices.

Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices.

Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices.

Exercises, at advanced undergraduate and graduate level, are provided in each chapter.
Über den Autor

Arup Bose is on the faculty of the Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Kolkata, India. He has research contributions in statistics, probability, economics and econometrics. He is a Fellow of the Institute of Mathematical Statistics (USA), and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award and holds a J.[...] National Fellowship. He has been on the editorial board of several journals. He has authored four books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), U-Statistics, Mm-Estimators and Resampling (with Snigdhansu Chatterjee) and Random Circulant Matrices (with Koushik Saha).

Inhaltsverzeichnis
  1. Classical independence, moments and cumulants. 2. Non-commutative probability. 3. Free independence. 4. Convergence. 5. Transforms. 6. C* -probability space. 7. Random matrices. 8. Convergence of some important matrices. 9. Joint convergence I: single pattern. 10. Joint convergence II: multiple patterns. 11. Asymptotic freeness of random matrices. 12. Brown measure. 13. Tying three loose ends.
Details
Erscheinungsjahr: 2021
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9780367700812
ISBN-10: 0367700816
Sprache: Englisch
Einband: Gebunden
Autor: Bose, Arup
Hersteller: Chapman and Hall/CRC
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 240 x 161 x 20 mm
Von/Mit: Arup Bose
Erscheinungsdatum: 27.10.2021
Gewicht: 0,599 kg
Artikel-ID: 128511955
Über den Autor

Arup Bose is on the faculty of the Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Kolkata, India. He has research contributions in statistics, probability, economics and econometrics. He is a Fellow of the Institute of Mathematical Statistics (USA), and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award and holds a J.[...] National Fellowship. He has been on the editorial board of several journals. He has authored four books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), U-Statistics, Mm-Estimators and Resampling (with Snigdhansu Chatterjee) and Random Circulant Matrices (with Koushik Saha).

Inhaltsverzeichnis
  1. Classical independence, moments and cumulants. 2. Non-commutative probability. 3. Free independence. 4. Convergence. 5. Transforms. 6. C* -probability space. 7. Random matrices. 8. Convergence of some important matrices. 9. Joint convergence I: single pattern. 10. Joint convergence II: multiple patterns. 11. Asymptotic freeness of random matrices. 12. Brown measure. 13. Tying three loose ends.
Details
Erscheinungsjahr: 2021
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9780367700812
ISBN-10: 0367700816
Sprache: Englisch
Einband: Gebunden
Autor: Bose, Arup
Hersteller: Chapman and Hall/CRC
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 240 x 161 x 20 mm
Von/Mit: Arup Bose
Erscheinungsdatum: 27.10.2021
Gewicht: 0,599 kg
Artikel-ID: 128511955
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte