85,59 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
is a Senior Lecturer of Mathematics at Columbia University. His general area of research interest is the relationship between mathematics, especially representation theory, and fundamental physics, especially quantum field theories like the Standard Model.
Introduces fundamental structures and concepts of representation theory in an elementary, physically relevant context
Gives a careful treatment of the mathematical subtleties of quantum theory, without obscuring its global mathematical shape
Preface.- 1 Introduction and Overview.- 2 The Group
U
(1) and its Representations.- 3 Two-state Systems and
SU
(2).- 4 Linear Algebra Review, Unitary and Orthogonal Groups.- 5 Lie Algebras and Lie Algebra Representations.- 6 The Rotation and Spin Groups in 3 and 4 Dimensions.- 7 Rotations and the Spin 1/2 Particle in a Magnetic Field.- 8 Representations of
SU
(2) and
SO
(3).- 9 Tensor Products, Entanglement, and Addition of Spin.- 10 Momentum and the Free Particle.- 11 Fourier Analysis and the Free Particle.- 12 Position and the Free Particle.- 13 The Heisenberg group and the Schrödinger Representation.- 14 The Poisson Bracket and Symplectic Geometry.- 15 Hamiltonian Vector Fields and the Moment Map.- 16 Quadratic Polynomials and the Symplectic Group.- 17 Quantization.- 18 Semi-direct Products.- 19 The Quantum Free Particle as a Representation of the Euclidean Group.- 20 Representations of Semi-direct Products.- 21 Central Potentials and the Hydrogen Atom.- 22 The Harmonic Oscillator.- 23 Coherent States and the Propagator for the Harmonic Oscillator.- 24 The Metaplectic Representation and Annihilation and Creation Operators,
d =
1.- 25 The Metaplectic Representation and Annihilation and Creation Operators, arbitrary
d
.- 26 Complex Structures and Quantization.- 27 The Fermionic Oscillator.- 28 Weyl and Clifford Algebras.- 29 Clifford Algebras and Geometry.- 30 Anticommuting Variables and Pseudo-classical Mechanics.- 31 Fermionic Quantization and Spinors.- 32 A Summary: Parallels Between Bosonic and Fermionic Quantization.- 33 Supersymmetry, Some Simple Examples.- 34 The Pauli Equation and the Dirac Operator.- 35 Lagrangian Methods and the Path Integral.- 36 Multi-particle Systems: Momentum Space Description.- 37 Multi-particle Systems and Field Quantization.- 38 Symmetries and Non-relativistic Quantum Fields.- 39 Quantization of Infinite dimensional Phase Spaces.- 40 Minkowski Space and the Lorentz Group.- 41Representations of the Lorentz Group.- 42 The Poincaré Group and its Representations.- 43 The Klein-Gordon Equation and Scalar Quantum Fields.- 44 Symmetries and Relativistic Scalar Quantum Fields.- 45
U
(1) Gauge Symmetry and Electromagnetic Field.- 46 Quantization of the Electromagnetic Field: the Photon.- 47 The Dirac Equation and Spin-1/2 Fields.- 48 An Introduction to the Standard Model.- 49 Further Topics.- A Conventions.- B Exercises.- Index.
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Theoretische Physik |
Genre: | Physik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xxii
668 S. 27 s/w Illustr. 668 p. 27 illus. |
ISBN-13: | 9783319878355 |
ISBN-10: | 3319878352 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Woit, Peter |
Auflage: | Softcover reprint of the original 1st ed. 2017 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG |
Maße: | 235 x 155 x 37 mm |
Von/Mit: | Peter Woit |
Erscheinungsdatum: | 18.05.2018 |
Gewicht: | 1,031 kg |
is a Senior Lecturer of Mathematics at Columbia University. His general area of research interest is the relationship between mathematics, especially representation theory, and fundamental physics, especially quantum field theories like the Standard Model.
Introduces fundamental structures and concepts of representation theory in an elementary, physically relevant context
Gives a careful treatment of the mathematical subtleties of quantum theory, without obscuring its global mathematical shape
Preface.- 1 Introduction and Overview.- 2 The Group
U
(1) and its Representations.- 3 Two-state Systems and
SU
(2).- 4 Linear Algebra Review, Unitary and Orthogonal Groups.- 5 Lie Algebras and Lie Algebra Representations.- 6 The Rotation and Spin Groups in 3 and 4 Dimensions.- 7 Rotations and the Spin 1/2 Particle in a Magnetic Field.- 8 Representations of
SU
(2) and
SO
(3).- 9 Tensor Products, Entanglement, and Addition of Spin.- 10 Momentum and the Free Particle.- 11 Fourier Analysis and the Free Particle.- 12 Position and the Free Particle.- 13 The Heisenberg group and the Schrödinger Representation.- 14 The Poisson Bracket and Symplectic Geometry.- 15 Hamiltonian Vector Fields and the Moment Map.- 16 Quadratic Polynomials and the Symplectic Group.- 17 Quantization.- 18 Semi-direct Products.- 19 The Quantum Free Particle as a Representation of the Euclidean Group.- 20 Representations of Semi-direct Products.- 21 Central Potentials and the Hydrogen Atom.- 22 The Harmonic Oscillator.- 23 Coherent States and the Propagator for the Harmonic Oscillator.- 24 The Metaplectic Representation and Annihilation and Creation Operators,
d =
1.- 25 The Metaplectic Representation and Annihilation and Creation Operators, arbitrary
d
.- 26 Complex Structures and Quantization.- 27 The Fermionic Oscillator.- 28 Weyl and Clifford Algebras.- 29 Clifford Algebras and Geometry.- 30 Anticommuting Variables and Pseudo-classical Mechanics.- 31 Fermionic Quantization and Spinors.- 32 A Summary: Parallels Between Bosonic and Fermionic Quantization.- 33 Supersymmetry, Some Simple Examples.- 34 The Pauli Equation and the Dirac Operator.- 35 Lagrangian Methods and the Path Integral.- 36 Multi-particle Systems: Momentum Space Description.- 37 Multi-particle Systems and Field Quantization.- 38 Symmetries and Non-relativistic Quantum Fields.- 39 Quantization of Infinite dimensional Phase Spaces.- 40 Minkowski Space and the Lorentz Group.- 41Representations of the Lorentz Group.- 42 The Poincaré Group and its Representations.- 43 The Klein-Gordon Equation and Scalar Quantum Fields.- 44 Symmetries and Relativistic Scalar Quantum Fields.- 45
U
(1) Gauge Symmetry and Electromagnetic Field.- 46 Quantization of the Electromagnetic Field: the Photon.- 47 The Dirac Equation and Spin-1/2 Fields.- 48 An Introduction to the Standard Model.- 49 Further Topics.- A Conventions.- B Exercises.- Index.
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Theoretische Physik |
Genre: | Physik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xxii
668 S. 27 s/w Illustr. 668 p. 27 illus. |
ISBN-13: | 9783319878355 |
ISBN-10: | 3319878352 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Woit, Peter |
Auflage: | Softcover reprint of the original 1st ed. 2017 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG |
Maße: | 235 x 155 x 37 mm |
Von/Mit: | Peter Woit |
Erscheinungsdatum: | 18.05.2018 |
Gewicht: | 1,031 kg |