127,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-3 Wochen
Following the success of Pulse-Width Modulated DC-DC Power Converters this second edition has been thoroughly revised and expanded to cover the latest challenges and advances in the field.
Key features of 2nd edition:
* Four new chapters, detailing the latest advances in power conversion, focus on: small-signal model and dynamic characteristics of the buck converter in continuous conduction mode; voltage-mode control of buck converter; small-signal model and characteristics of the boost converter in the discontinuous conduction mode and electromagnetic compatibility EMC.
* Provides readers with a solid understanding of the principles of operation, synthesis, analysis and design of PWM power converters and semiconductor power devices, including wide band-gap power devices (SiC and GaN).
* Fully revised Solutions for all end-of-chapter problems available to instructors via the book companion website.
* Step-by-step derivation of closed-form design equations with illustrations.
* Fully revised figures based on real data.
With improved end-of-chapter summaries of key concepts, review questions, problems and answers, biographies and case studies, this is an essential textbook for graduate and senior undergraduate students in electrical engineering. Its superior readability and clarity of explanations also makes it a key reference for practicing engineers and research scientists.
Following the success of Pulse-Width Modulated DC-DC Power Converters this second edition has been thoroughly revised and expanded to cover the latest challenges and advances in the field.
Key features of 2nd edition:
* Four new chapters, detailing the latest advances in power conversion, focus on: small-signal model and dynamic characteristics of the buck converter in continuous conduction mode; voltage-mode control of buck converter; small-signal model and characteristics of the boost converter in the discontinuous conduction mode and electromagnetic compatibility EMC.
* Provides readers with a solid understanding of the principles of operation, synthesis, analysis and design of PWM power converters and semiconductor power devices, including wide band-gap power devices (SiC and GaN).
* Fully revised Solutions for all end-of-chapter problems available to instructors via the book companion website.
* Step-by-step derivation of closed-form design equations with illustrations.
* Fully revised figures based on real data.
With improved end-of-chapter summaries of key concepts, review questions, problems and answers, biographies and case studies, this is an essential textbook for graduate and senior undergraduate students in electrical engineering. Its superior readability and clarity of explanations also makes it a key reference for practicing engineers and research scientists.
Marian K. Kazimierczuk Wright State University, Dayton, Ohio, USA
About the Author xxi
Preface xxiii
Nomenclature xxv
1 Introduction 1
1.1 Classification of Power Supplies 1
1.2 Basic Functions of Voltage Regulators 3
1.3 Power Relationships in DC-DC Converters 4
1.4 DC Transfer Functions of DC-DC Converters 5
1.5 Static Characteristics of DC Voltage Regulators 6
1.6 Dynamic Characteristics of DC Voltage Regulators 9
1.7 Linear Voltage Regulators 12
1.7.1 Series Voltage Regulator 13
1.7.2 Shunt Voltage Regulator 14
1.8 Topologies of PWM DC-DC Converters 16
1.9 Relationships Among Current, Voltage, Energy, and Power 18
1.10 Summary 19
References 19
Review Questions 20
Problems 21
2 Buck PWM DC-DC Converter 22
2.1 Introduction 22
2.2 DC Analysis of PWM Buck Converter for CCM 22
2.2.1 Circuit Description 22
2.2.2 Assumptions 25
2.2.3 Time Interval: 0 < t ¿ DT 25
2.2.4 Time Interval: DT < t ¿ T 26
2.2.5 Device Stresses for CCM 27
2.2.6 DC Voltage Transfer Function for CCM 27
2.2.7 Boundary Between CCM and DCM 29
2.2.8 Capacitors 31
2.2.9 Ripple Voltage in Buck Converter for CCM 33
2.2.10 Switching Losses with Linear MOSFET Output Capacitance 39
2.2.11 Switching Losses with Nonlinear MOSFET Output Capacitance 40
2.2.12 Power Losses and Efficiency of Buck Converter for CCM 43
2.2.13 DC Voltage Transfer Function of Lossy Converter for CCM 48
2.2.14 MOSFET Gate-Drive Power 48
2.2.15 Gate Driver 49
2.2.16 Design of Buck Converter for CCM 50
2.3 DC Analysis of PWM Buck Converter for DCM 52
2.3.1 Time Interval: 0 < t ¿ DT 56
2.3.2 Time Interval: DT < t ¿ (D + D1)T 58
2.3.3 Time Interval: (D + D1)T < t ¿ T 58
2.3.4 Device Stresses for DCM 59
2.3.5 DC Voltage Transfer Function for DCM 59
2.3.6 Maximum Inductance for DCM 62
2.3.7 Power Losses and Efficiency of Buck Converter for DCM 63
2.3.8 Design of Buck Converter for DCM 65
2.4 Buck Converter with Input Filter 68
2.5 Buck Converter with Synchronous Rectifier 68
2.6 Buck Converter with Positive Common Rail 76
2.7 Quadratic Buck Converter 76
2.8 Tapped-Inductor Buck Converters 79
2.8.1 Tapped-Inductor Common-Diode Buck Converter 79
2.8.2 Tapped-Inductor Common-Transistor Buck Converter 81
2.8.3 Watkins-Johnson Converter 82
2.9 Multiphase Buck Converter 83
2.10 Switched-Inductor Buck Converter 85
2.11 Layout 85
2.12 Summary 85
References 87
Review Questions 88
Problems 88
3 Boost PWM DC-DC Converter 90
3.1 Introduction 90
3.2 DC Analysis of PWM Boost Converter for CCM 90
3.2.1 Circuit Description 90
3.2.2 Assumptions 91
3.2.3 Time Interval: 0 < t ¿ DT 93
3.2.4 Time Interval: DT < t ¿ T 94
3.2.5 DC Voltage Transfer Function for CCM 94
3.2.6 Boundary Between CCM and DCM 95
3.2.7 Ripple Voltage in Boost Converter for CCM 98
3.2.8 Power Losses and Efficiency of Boost Converter for CCM 100
3.2.9 DC Voltage Transfer Function of Lossy Boost Converter for CCM 102
3.2.10 Design of Boost Converter for CCM 103
3.3 DC Analysis of PWM Boost Converter for DCM 107
3.3.1 Time Interval: 0 < t ¿ DT 110
3.3.2 Time Interval: DT < t ¿ (D + D1)T 111
3.3.3 Time Interval: (D + D1)T < t ¿ T 112
3.3.4 Device Stresses for DCM 112
3.3.5 DC Voltage Transfer Function for DCM 112
3.3.6 Maximum Inductance for DCM 117
3.3.7 Power Losses and Efficiency of Boost Converter for DCM 117
3.3.8 Design of Boost Converter for DCM 120
3.4 Bidirectional Buck and Boost Converters 127
3.5 Synchronous Boost Converter 129
3.6 Tapped-Inductor Boost Converters 129
3.6.1 Tapped-Inductor Common-Diode Boost Converter 131
3.6.2 Tapped-Inductor Common-Load Boost Converter 132
3.7 Duality 133
3.8 Power Factor Correction 134
3.8.1 Power Factor 134
3.8.2 Boost Power Factor Corrector 138
3.8.3 Electronic Ballasts for Fluorescent Lamps 141
3.9 Summary 141
References 142
Review Questions 143
Problems 143
4 Buck-Boost PWM DC-DC Converter 145
4.1 Introduction 145
4.2 DC Analysis of PWM Buck-Boost Converter for CCM 145
4.2.1 Circuit Description 145
4.2.2 Assumptions 146
4.2.3 Time Interval: 0 < t ¿ DT 146
4.2.4 Time Interval: DT < t ¿ T 148
4.2.5 DC Voltage Transfer Function for CCM 149
4.2.6 Device Stresses for CCM 150
4.2.7 Boundary Between CCM and DCM 151
4.2.8 Ripple Voltage in Buck-Boost Converter for CCM 152
4.2.9 Power Losses and Efficiency of the Buck-Boost Converter for CCM 155
4.2.10 DC Voltage Transfer Function of Lossy Buck-Boost Converter for CCM 158
4.2.11 Design of Buck-Boost Converter for CCM 159
4.3 DC Analysis of PWM Buck-Boost Converter for DCM 162
4.3.1 Time Interval: 0 < t ¿ DT 165
4.3.2 Time Interval: DT < t ¿ (D + D1)T 166
4.3.3 Time Interval: (D + D1)T < t ¿ T 167
4.3.4 Device Stresses of the Buck-Boost Converter in DCM 167
4.3.5 DC Voltage Transfer Function of the Buck-Boost Converter for DCM 167
4.3.6 Maximum Inductance for DCM 170
4.3.7 Power Losses and Efficiency of the Buck-Boost Converter in DCM 172
4.3.8 Design of Buck-Boost Converter for DCM 174
4.4 Bidirectional Buck-Boost Converter 180
4.5 Synthesis of Buck-Boost Converter 181
4.6 Synthesis of Boost-Buck (¿uk) Converter 183
4.7 Noninverting Buck-Boost Converters 184
4.7.1 Cascaded Noninverting Buck-Boost Converters 184
4.7.2 Four-Transistor Noninverting Buck-Boost Converters 184
4.8 Tapped-Inductor Buck-Boost Converters 186
4.8.1 Tapped-Inductor Common-Diode Buck-Boost Converter 186
4.8.2 Tapped-Inductor Common-Transistor Buck-Boost Converter 187
4.8.3 Tapped-Inductor Common-Load Buck-Boost Converter 188
4.8.4 Tapped-Inductor Common-Source Buck-Boost Converter 191
4.9 Summary 192
References 192
Review Questions 193
Problems 193
5 Flyback PWM DC-DC Converter 195
5.1 Introduction 195
5.2 Transformers 196
5.3 DC Analysis of PWM Flyback Converter for CCM 197
5.3.1 Derivation of PWM Flyback Converter 197
5.3.2 Circuit Description 197
5.3.3 Assumptions 199
5.3.4 Time Interval: 0 < t ¿ DT 200
5.3.5 Time Interval: DT < t ¿ T 201
5.3.6 DC Voltage Transfer Function for CCM 203
5.3.7 Boundary Between CCM and DCM 204
5.3.8 Ripple Voltage in Flyback Converter for CCM 205
5.3.9 Power Losses and Efficiency of Flyback Converter for CCM 207
5.3.10 DC Voltage Transfer Function of Lossy Converter for CCM 210
5.3.11 Design of Flyback Converter for CCM 211
5.4 DC Analysis of PWM Flyback Converter for DCM 214
5.4.1 Time Interval: 0 < t ¿ DT 217
5.4.2 Time Interval: DT < t ¿ (D + D1)T 219
5.4.3 Time Interval: (D + D1)T < t ¿ T 220
5.4.4 DC Voltage Transfer Function for DCM 221
5.4.5 Maximum Magnetizing Inductance for DCM 222
5.4.6 Ripple Voltage in Flyback Converter for DCM 225
5.4.7 Power Losses and Efficiency of Flyback Converter for DCM 226
5.4.8 Design of Flyback Converter for DCM 228
5.5 Multiple-Output Flyback Converter 232
5.6 Bidirectional Flyback Converter 237
5.7 Ringing in Flyback Converter 237
5.8 Flyback Converter with Passive Dissipative Snubber 240
5.9 Flyback Converter with Zener Diode Voltage Clamp 240
5.10 Flyback Converter with Active Clamping 241
5.11 Two-Transistor Flyback Converter 241
5.12 Summary 243
References 244
Review Questions 244
Problems 245
6 Forward PWM DC-DC Converter 246
6.1 Introduction 246
6.2 DC Analysis of PWM Forward Converter for CCM 246
6.2.1 Derivation of Forward PWM Converter 246
6.2.2 Time Interval: 0 < t ¿ DT 248
6.2.3 Time Interval: DT < t ¿ DT + tm 251
6.2.4 Time Interval: DT + tm < t ¿ T 253
6.2.5 Maximum Duty Cycle 253
6.2.6 Device Stresses 254
6.2.7 DC Voltage Transfer Function for CCM 255
6.2.8 Boundary Between CCM and DCM 255
6.2.9 Ripple Voltage in Forward Converter for CCM 256
6.2.10 Power Losses and Efficiency of Forward Converter for CCM 258
6.2.11 DC Voltage Transfer Function of Lossy Converter for CCM 261
6.2.12 Design of Forward Converter for CCM 262
6.3 DC Analysis of PWM Forward Converter for DCM 269
6.3.1 Time Interval: 0 < t ¿ DT 269
6.3.2 Time Interval: DT < t ¿ DT + tm 272
6.3.3 Time Interval: DT + tm < t ¿ (D + D1)T 273
6.3.4 Time Interval: (D + D1)T < t ¿ T 273
6.3.5 DC Voltage Transfer Function for DCM 274
6.3.6 Maximum Inductance for DCM 277
6.3.7 Power Losses and Efficiency of Forward Converter for DCM 278
6.3.8 Design of Forward Converter for DCM 280
6.4...
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Importe, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 960 S. |
ISBN-13: | 9781119009542 |
ISBN-10: | 1119009545 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Kazimierczuk, Marian K |
Auflage: | 2nd Revised edition |
Hersteller: |
Wiley
John Wiley & Sons |
Verantwortliche Person für die EU: | Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com |
Maße: | 241 x 196 x 56 mm |
Von/Mit: | Marian K Kazimierczuk |
Erscheinungsdatum: | 26.10.2015 |
Gewicht: | 1,953 kg |
Marian K. Kazimierczuk Wright State University, Dayton, Ohio, USA
About the Author xxi
Preface xxiii
Nomenclature xxv
1 Introduction 1
1.1 Classification of Power Supplies 1
1.2 Basic Functions of Voltage Regulators 3
1.3 Power Relationships in DC-DC Converters 4
1.4 DC Transfer Functions of DC-DC Converters 5
1.5 Static Characteristics of DC Voltage Regulators 6
1.6 Dynamic Characteristics of DC Voltage Regulators 9
1.7 Linear Voltage Regulators 12
1.7.1 Series Voltage Regulator 13
1.7.2 Shunt Voltage Regulator 14
1.8 Topologies of PWM DC-DC Converters 16
1.9 Relationships Among Current, Voltage, Energy, and Power 18
1.10 Summary 19
References 19
Review Questions 20
Problems 21
2 Buck PWM DC-DC Converter 22
2.1 Introduction 22
2.2 DC Analysis of PWM Buck Converter for CCM 22
2.2.1 Circuit Description 22
2.2.2 Assumptions 25
2.2.3 Time Interval: 0 < t ¿ DT 25
2.2.4 Time Interval: DT < t ¿ T 26
2.2.5 Device Stresses for CCM 27
2.2.6 DC Voltage Transfer Function for CCM 27
2.2.7 Boundary Between CCM and DCM 29
2.2.8 Capacitors 31
2.2.9 Ripple Voltage in Buck Converter for CCM 33
2.2.10 Switching Losses with Linear MOSFET Output Capacitance 39
2.2.11 Switching Losses with Nonlinear MOSFET Output Capacitance 40
2.2.12 Power Losses and Efficiency of Buck Converter for CCM 43
2.2.13 DC Voltage Transfer Function of Lossy Converter for CCM 48
2.2.14 MOSFET Gate-Drive Power 48
2.2.15 Gate Driver 49
2.2.16 Design of Buck Converter for CCM 50
2.3 DC Analysis of PWM Buck Converter for DCM 52
2.3.1 Time Interval: 0 < t ¿ DT 56
2.3.2 Time Interval: DT < t ¿ (D + D1)T 58
2.3.3 Time Interval: (D + D1)T < t ¿ T 58
2.3.4 Device Stresses for DCM 59
2.3.5 DC Voltage Transfer Function for DCM 59
2.3.6 Maximum Inductance for DCM 62
2.3.7 Power Losses and Efficiency of Buck Converter for DCM 63
2.3.8 Design of Buck Converter for DCM 65
2.4 Buck Converter with Input Filter 68
2.5 Buck Converter with Synchronous Rectifier 68
2.6 Buck Converter with Positive Common Rail 76
2.7 Quadratic Buck Converter 76
2.8 Tapped-Inductor Buck Converters 79
2.8.1 Tapped-Inductor Common-Diode Buck Converter 79
2.8.2 Tapped-Inductor Common-Transistor Buck Converter 81
2.8.3 Watkins-Johnson Converter 82
2.9 Multiphase Buck Converter 83
2.10 Switched-Inductor Buck Converter 85
2.11 Layout 85
2.12 Summary 85
References 87
Review Questions 88
Problems 88
3 Boost PWM DC-DC Converter 90
3.1 Introduction 90
3.2 DC Analysis of PWM Boost Converter for CCM 90
3.2.1 Circuit Description 90
3.2.2 Assumptions 91
3.2.3 Time Interval: 0 < t ¿ DT 93
3.2.4 Time Interval: DT < t ¿ T 94
3.2.5 DC Voltage Transfer Function for CCM 94
3.2.6 Boundary Between CCM and DCM 95
3.2.7 Ripple Voltage in Boost Converter for CCM 98
3.2.8 Power Losses and Efficiency of Boost Converter for CCM 100
3.2.9 DC Voltage Transfer Function of Lossy Boost Converter for CCM 102
3.2.10 Design of Boost Converter for CCM 103
3.3 DC Analysis of PWM Boost Converter for DCM 107
3.3.1 Time Interval: 0 < t ¿ DT 110
3.3.2 Time Interval: DT < t ¿ (D + D1)T 111
3.3.3 Time Interval: (D + D1)T < t ¿ T 112
3.3.4 Device Stresses for DCM 112
3.3.5 DC Voltage Transfer Function for DCM 112
3.3.6 Maximum Inductance for DCM 117
3.3.7 Power Losses and Efficiency of Boost Converter for DCM 117
3.3.8 Design of Boost Converter for DCM 120
3.4 Bidirectional Buck and Boost Converters 127
3.5 Synchronous Boost Converter 129
3.6 Tapped-Inductor Boost Converters 129
3.6.1 Tapped-Inductor Common-Diode Boost Converter 131
3.6.2 Tapped-Inductor Common-Load Boost Converter 132
3.7 Duality 133
3.8 Power Factor Correction 134
3.8.1 Power Factor 134
3.8.2 Boost Power Factor Corrector 138
3.8.3 Electronic Ballasts for Fluorescent Lamps 141
3.9 Summary 141
References 142
Review Questions 143
Problems 143
4 Buck-Boost PWM DC-DC Converter 145
4.1 Introduction 145
4.2 DC Analysis of PWM Buck-Boost Converter for CCM 145
4.2.1 Circuit Description 145
4.2.2 Assumptions 146
4.2.3 Time Interval: 0 < t ¿ DT 146
4.2.4 Time Interval: DT < t ¿ T 148
4.2.5 DC Voltage Transfer Function for CCM 149
4.2.6 Device Stresses for CCM 150
4.2.7 Boundary Between CCM and DCM 151
4.2.8 Ripple Voltage in Buck-Boost Converter for CCM 152
4.2.9 Power Losses and Efficiency of the Buck-Boost Converter for CCM 155
4.2.10 DC Voltage Transfer Function of Lossy Buck-Boost Converter for CCM 158
4.2.11 Design of Buck-Boost Converter for CCM 159
4.3 DC Analysis of PWM Buck-Boost Converter for DCM 162
4.3.1 Time Interval: 0 < t ¿ DT 165
4.3.2 Time Interval: DT < t ¿ (D + D1)T 166
4.3.3 Time Interval: (D + D1)T < t ¿ T 167
4.3.4 Device Stresses of the Buck-Boost Converter in DCM 167
4.3.5 DC Voltage Transfer Function of the Buck-Boost Converter for DCM 167
4.3.6 Maximum Inductance for DCM 170
4.3.7 Power Losses and Efficiency of the Buck-Boost Converter in DCM 172
4.3.8 Design of Buck-Boost Converter for DCM 174
4.4 Bidirectional Buck-Boost Converter 180
4.5 Synthesis of Buck-Boost Converter 181
4.6 Synthesis of Boost-Buck (¿uk) Converter 183
4.7 Noninverting Buck-Boost Converters 184
4.7.1 Cascaded Noninverting Buck-Boost Converters 184
4.7.2 Four-Transistor Noninverting Buck-Boost Converters 184
4.8 Tapped-Inductor Buck-Boost Converters 186
4.8.1 Tapped-Inductor Common-Diode Buck-Boost Converter 186
4.8.2 Tapped-Inductor Common-Transistor Buck-Boost Converter 187
4.8.3 Tapped-Inductor Common-Load Buck-Boost Converter 188
4.8.4 Tapped-Inductor Common-Source Buck-Boost Converter 191
4.9 Summary 192
References 192
Review Questions 193
Problems 193
5 Flyback PWM DC-DC Converter 195
5.1 Introduction 195
5.2 Transformers 196
5.3 DC Analysis of PWM Flyback Converter for CCM 197
5.3.1 Derivation of PWM Flyback Converter 197
5.3.2 Circuit Description 197
5.3.3 Assumptions 199
5.3.4 Time Interval: 0 < t ¿ DT 200
5.3.5 Time Interval: DT < t ¿ T 201
5.3.6 DC Voltage Transfer Function for CCM 203
5.3.7 Boundary Between CCM and DCM 204
5.3.8 Ripple Voltage in Flyback Converter for CCM 205
5.3.9 Power Losses and Efficiency of Flyback Converter for CCM 207
5.3.10 DC Voltage Transfer Function of Lossy Converter for CCM 210
5.3.11 Design of Flyback Converter for CCM 211
5.4 DC Analysis of PWM Flyback Converter for DCM 214
5.4.1 Time Interval: 0 < t ¿ DT 217
5.4.2 Time Interval: DT < t ¿ (D + D1)T 219
5.4.3 Time Interval: (D + D1)T < t ¿ T 220
5.4.4 DC Voltage Transfer Function for DCM 221
5.4.5 Maximum Magnetizing Inductance for DCM 222
5.4.6 Ripple Voltage in Flyback Converter for DCM 225
5.4.7 Power Losses and Efficiency of Flyback Converter for DCM 226
5.4.8 Design of Flyback Converter for DCM 228
5.5 Multiple-Output Flyback Converter 232
5.6 Bidirectional Flyback Converter 237
5.7 Ringing in Flyback Converter 237
5.8 Flyback Converter with Passive Dissipative Snubber 240
5.9 Flyback Converter with Zener Diode Voltage Clamp 240
5.10 Flyback Converter with Active Clamping 241
5.11 Two-Transistor Flyback Converter 241
5.12 Summary 243
References 244
Review Questions 244
Problems 245
6 Forward PWM DC-DC Converter 246
6.1 Introduction 246
6.2 DC Analysis of PWM Forward Converter for CCM 246
6.2.1 Derivation of Forward PWM Converter 246
6.2.2 Time Interval: 0 < t ¿ DT 248
6.2.3 Time Interval: DT < t ¿ DT + tm 251
6.2.4 Time Interval: DT + tm < t ¿ T 253
6.2.5 Maximum Duty Cycle 253
6.2.6 Device Stresses 254
6.2.7 DC Voltage Transfer Function for CCM 255
6.2.8 Boundary Between CCM and DCM 255
6.2.9 Ripple Voltage in Forward Converter for CCM 256
6.2.10 Power Losses and Efficiency of Forward Converter for CCM 258
6.2.11 DC Voltage Transfer Function of Lossy Converter for CCM 261
6.2.12 Design of Forward Converter for CCM 262
6.3 DC Analysis of PWM Forward Converter for DCM 269
6.3.1 Time Interval: 0 < t ¿ DT 269
6.3.2 Time Interval: DT < t ¿ DT + tm 272
6.3.3 Time Interval: DT + tm < t ¿ (D + D1)T 273
6.3.4 Time Interval: (D + D1)T < t ¿ T 273
6.3.5 DC Voltage Transfer Function for DCM 274
6.3.6 Maximum Inductance for DCM 277
6.3.7 Power Losses and Efficiency of Forward Converter for DCM 278
6.3.8 Design of Forward Converter for DCM 280
6.4...
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Importe, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 960 S. |
ISBN-13: | 9781119009542 |
ISBN-10: | 1119009545 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Kazimierczuk, Marian K |
Auflage: | 2nd Revised edition |
Hersteller: |
Wiley
John Wiley & Sons |
Verantwortliche Person für die EU: | Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com |
Maße: | 241 x 196 x 56 mm |
Von/Mit: | Marian K Kazimierczuk |
Erscheinungsdatum: | 26.10.2015 |
Gewicht: | 1,953 kg |