Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Practical Machine Learning for Computer Vision
End-to-End Machine Learning for Images
Taschenbuch von Valliappa Lakshmanan (u. a.)
Sprache: Englisch

73,30 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung

This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability.

Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras.

You'll learn how to:

  • • Design ML architecture for computer vision tasks • Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task • Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model • Preprocess images for data augmentation and to support learnability • Incorporate explainability and responsible AI best practices • Deploy image models as web services or on edge devices • Monitor and manage ML models

This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability.

Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras.

You'll learn how to:

  • • Design ML architecture for computer vision tasks • Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task • Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model • Preprocess images for data augmentation and to support learnability • Incorporate explainability and responsible AI best practices • Deploy image models as web services or on edge devices • Monitor and manage ML models
Über den Autor
Valliappa (Lak) Lakshmanan is the director of analytics and AI solutions at Google Cloud, where he leads a team building cross-industry solutions to business problems. His mission is to democratize machine learning so that it can be done by anyone anywhere.
Details
Erscheinungsjahr: 2021
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781098102364
ISBN-10: 1098102363
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Lakshmanan, Valliappa
Görner, Martin
Gillard, Ryan
Hersteller: O'Reilly Media
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 236 x 179 x 31 mm
Von/Mit: Valliappa Lakshmanan (u. a.)
Erscheinungsdatum: 31.08.2021
Gewicht: 0,849 kg
Artikel-ID: 119777171
Über den Autor
Valliappa (Lak) Lakshmanan is the director of analytics and AI solutions at Google Cloud, where he leads a team building cross-industry solutions to business problems. His mission is to democratize machine learning so that it can be done by anyone anywhere.
Details
Erscheinungsjahr: 2021
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781098102364
ISBN-10: 1098102363
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Lakshmanan, Valliappa
Görner, Martin
Gillard, Ryan
Hersteller: O'Reilly Media
Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, D-49078 Osnabrück, mail@preigu.de
Maße: 236 x 179 x 31 mm
Von/Mit: Valliappa Lakshmanan (u. a.)
Erscheinungsdatum: 31.08.2021
Gewicht: 0,849 kg
Artikel-ID: 119777171
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte