Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Polymer Crystallization
Buch von Ewa Piorkowska (u. a.)
Sprache: Englisch

235,50 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Polymeric crystals are more complex in nature than other materials' crystal structures due to significant structural disorder present. The only comprehensive reference on polymer crystallization, Handbook of Polymer Crystallization provides readers with a broad, in-depth guide on the subject, covering the numerous problems encountered during crystallization as well as solutions to resolve those problems to achieve the desired result. Edited by leading authorities in the field, topics explored include neat polymers, heterogeneous systems, polymer blends, polymer composites orientation induced crystallization, crystallization in nanocomposites, and crystallization in complex thermal processing conditions.
Polymeric crystals are more complex in nature than other materials' crystal structures due to significant structural disorder present. The only comprehensive reference on polymer crystallization, Handbook of Polymer Crystallization provides readers with a broad, in-depth guide on the subject, covering the numerous problems encountered during crystallization as well as solutions to resolve those problems to achieve the desired result. Edited by leading authorities in the field, topics explored include neat polymers, heterogeneous systems, polymer blends, polymer composites orientation induced crystallization, crystallization in nanocomposites, and crystallization in complex thermal processing conditions.
Über den Autor

DR. EWA PIORKOWSKA, is Professor and the Head of the Department of Polymer Structure at the Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Poland. Her research interests include crystallization, structure and properties of polymers, polymer blends, composites and nanocomposites.

DR. GREGORY C. RUTLEDGE, is the Lammot du Pont Professor in the Department of Chemical Engineering at the Massachusetts Institute of Technology. His research interests include polymer science and engineering, statistical thermodynamics, molecular simulation, and nanotechnology.

Inhaltsverzeichnis

Preface xiii

Contributors xv

1 Experimental Techniques 1
Benjamin S. Hsiao, Feng Zuo, and Yimin Mao, Christoph Schick

1.1 Introduction, 1

1.2 Optical Microscopy, 2

1.2.1 Reflection and Transmission Microscopy, 2

1.2.2 Contrast Modes, 2

1.2.3 Selected Applications, 3

1.3 Electron Microscopy, 5

1.3.1 Imaging Principle, 5

1.3.2 Sample Preparation, 6

1.3.3 Relevant Experimental Techniques, 7

1.3.4 Selected Applications, 8

1.4 Atomic Force Microscopy, 9

1.4.1 Imaging Principle, 9

1.4.2 Scanning Modes, 9

1.4.3 Comparison between AFM and EM, 10

1.4.4 Recent Development: Video AFM, 10

1.4.5 Selected Applications, 10

1.5 Nuclear Magnetic Resonance, 12

1.5.1 Chemical Shift, 13

1.5.2 Relevant Techniques, 13

1.5.3 Recent Development: Multidimensional NMR, 14

1.5.4 Selected Applications, 14

1.6 Scattering Techniques: X-Ray, Light, and Neutron, 15

1.6.1 Wide-Angle X-Ray Diffraction, 15

1.6.2 Small-Angle X-Ray Scattering, 17

1.6.3 Small-Angle Light Scattering, 19

1.6.4 Small-Angle Neutron Scattering, 21

1.7 Differential Scanning Calorimetry, 22

1.7.1 Modes of Operation, 22

1.7.2 Determination of Degree of Crystallinity, 25

1.8 Summary, 25

Acknowledgments, 26

References, 26

2 Crystal Structures of Polymers 31
Claudio De Rosa and Finizia Auriemma

2.1 Constitution and Confi guration of Polymer Chains, 31

2.2 Conformation of Polymer Chains in Crystals and Conformational Polymorphism, 33

2.3 Packing of Macromolecules in Polymer Crystals, 43

2.4 Symmetry Breaking, 49

2.5 Packing Effects on the Conformation of Polymer Chains in the Crystals: The Case of Aliphatic Polyamides, 50

2.6 Defects and Disorder in Polymer Crystals, 55

2.6.1 Substitutional Isomorphism of Different Chains, 56

2.6.2 Substitutional Isomorphism of Different Monomeric Units, 57

2.6.3 Conformational Isomorphism, 58

2.6.4 Disorder in the Stacking of Ordered Layers (Stacking Fault Disorder), 58

2.7 Crystal Habits, 60

2.7.1 Rounded Lateral Habits, 66

Acknowledgments, 67

References, 67

3 Structure of Polycrystalline Aggregates 73
Buckley Crist

3.1 Introduction, 73

3.2 Crystals Grown from Solution, 75

3.2.1 Facetted Monolayer Crystals from Dilute Solution, 75

3.2.2 Dendritic Crystals from Dilute Solution, 81

3.2.3 Growth Spirals in Dilute Solution, 85

3.2.4 Concentrated Solutions, 92

3.3 Crystals and Aggregates Grown from Molten Films, 94

3.3.1 Structures in Thin Films, 94

3.3.2 Structures in Ultrathin Films, 98

3.3.3 Edge-On Lamellae in Molten Films, 102

3.4 Spherulitic Aggregates, 104

3.4.1 Optical Properties of Spherulites, 105

3.4.2 Occurrence of Spherulites, 108

3.4.3 Development of Spherulites, 110

3.4.4 Banded Spherulites and Lamellar Twist, 116

Acknowledgments, 121

References, 121

4 Polymer Nucleation 125
Kiyoka N. Okada and Masamichi Hikosaka

4.1 Introduction, 126

4.2 Classical Nucleation Theory, 126

4.2.1 Nucleation Rate (I), 126

4.2.2 Free Energy for Formation of a Nucleus ¿G(N), 127

4.2.3 Free Energy for Formation of a Critical Nucleus (¿G*), 127

4.2.4 Shape of a Nucleus Is Related to Kinetic Parameters, 128

4.2.5 Diffusion, 128

4.3 Direct Observation of Nano-Nucleation by Synchrotron Radiation, 128

4.3.1 Introduction and Experimental Procedure, 128

4.3.2 Observation of Nano-Nucleation by SAXS, 128

4.3.3 Extended Guinier Plot Method and Iteration Method, 129

4.3.4 Kinetic Parameters and Size Distribution of the Nano-Nucleus, 130

4.3.5 Real Image of Nano-Nucleation, 131

4.3.6 Supercooling Dependence of Nano-nucleation, 133

4.3.7 Relationship between Nano-Nucleation and Macro-Crystallization, 133

4.4 Improvement of Nucleation Theory, 135

4.4.1 Introduction, 135

4.4.2 Nucleation Theory Based on Direct Observation of Nucleation, 135

4.4.3 Confirmation of the Theory by Overall Crystallinity, 137

4.5 Homogeneous Nucleation from the Bulk Melt under Elongational Flow, 139

4.5.1 Introduction and Case Study, 139

4.5.2 Formulation of Elongational Strain Rate e, 139

4.5.3 Nano-Oriented Crystals, 140

4.5.4 Evidence of Homogeneous Nucleation, 144

4.5.5 Nano-Nucleation Results in Ultrahigh Performance, 147

4.6 Heterogeneous Nucleation, 148

4.6.1 Introduction, 148

4.6.2 Experimental, 149

4.6.3 Role of Epitaxy in Heterogeneous Nucleation, 150

4.6.4 Acceleration Mechanism of Nucleation of Polymers by Nano-Sizing of Nucleating Agent, 153

4.7 Effect of Entanglement Density on the Nucleation Rate, 156

4.7.1 Introduction and Experimental, 156

4.7.2 Increase of ¿e Leads to a Decrease of I, 157

4.7.3 Change of ¿e with ¿t, 158

4.7.4 Two-Step Entangling Model, 159

4.8 Conclusion, 160

Acknowledgments, 161

References, 161

5 Growth of Polymer Crystals 165
Kohji Tashiro

5.1 Introduction, 165

5.1.1 Complex Behavior of Polymers, 165

5.2 Growth of Polymer Crystals from Solutions, 167

5.2.1 Single Crystals, 167

5.2.2 Crystallization from Solution under Shear, 168

5.2.3 Solution Casting Method, 168

5.3 Growth of Polymer Crystals from Melt, 169

5.3.1 Positive and Negative Spherulites, 169

5.3.2 Spherulite Morphology and Crystalline Modification, 170

5.3.3 Spherulite Patterns of Blend Samples, 172

5.4 Crystallization Mechanism of Polymer, 173

5.4.1 Basic Theory of Crystallization of Polymer, 173

5.4.2 Growth Rate of Spherulites, 177

5.5 Microscopically Viewed Structural Evolution in the Growing Polymer Crystals, 178

5.5.1 Experimental Techniques, 178

5.5.2 Structural Evolution in Isothermal Crystallization, 179

5.5.3 Shear-Induced Crystallization of the Melt, 186

5.6 Crystallization upon Heating from the Glassy State, 189

5.6.1 Cold Crystallization, 189

5.6.2 Solvent-Induced Crystallization of Polymer Glass, 189

5.7 Crystallization Phenomenon Induced by Tensile Force, 191

5.8 Photoinduced Formation and Growth of Polymer Crystals, 191

5.9 Conclusion, 192

References, 193

6 Computer Modeling of Polymer Crystallization 197
Gregory C. Rutledge

6.1 Introduction, 197

6.2 Methods, 198

6.2.1 Molecular Dynamics, 199

6.2.2 Langevin Dynamics, 200

6.2.3 Monte Carlo, 200

6.2.4 Kinetic Monte Carlo, 201

6.3 Single-Chain Behavior in Crystallization, 202

6.3.1 Solid-on-Solid Models, 202

6.3.2 Molecular and Langevin Dynamics, 203

6.4 Crystallization from the Melt, 204

6.4.1 Lattice Monte Carlo Simulations, 205

6.4.2 Molecular Dynamics Using Coarse-Grained Models, 206

6.4.3 Molecular Dynamics Using Atomistic Models, 207

6.5 Crystallization under Deformation or Flow, 208

6.6 Concluding Remarks, 210

References, 211

7 Overall Crystallization Kinetics 215
Ewa Piorkowska and Andrzej Galeski

7.1 Introduction, 215

7.2 Measurements, 216

7.3 Simulation, 217

7.4 Theories: Isothermal and Nonisothermal Crystallization, 218

7.4.1 Introductory Remarks, 218

7.4.2 Extended Volume Approach, 218

7.4.3 Probabilistic Approaches, 220

7.4.4 Isokinetic Model, 223

7.4.5 Rate Equations, 223

7.5 Complex Crystallization Conditions: General Models, 224

7.6 Factors Influencing the Overall Crystallization Kinetics, 224

7.6.1 Crystallization in a Uniform Temperature Field, 224

7.6.2 Crystallization in a Temperature Gradient, 225

7.6.3 Crystallization in a Confi ned Space, 226

7.6.4 Flow-Induced Crystallization, 228

7.7 Analysis of Crystallization Data, 230

7.7.1 Isothermal Crystallization, 230

7.7.2 Nonisothermal Crystallization, 231

7.8 Conclusions, 233

References, 234

8 Epitaxial Crystallization of Polymers: Means and Issues 237
Annette Thierry and Bernard A. Lotz

8.1 Introduction and History, 237

8.2 Means of Investigation of Epitaxial Crystallization, 239

8.2.1 Global Techniques, 239

8.2.2 Thin Film Techniques, 239

8.2.3 Sample Preparation Techniques, 240

8.2.4 Other Samples and Investigation Procedures, 241

8.3 Epitaxial Crystallization of Polymers, 241

8.3.1 General Principles, 241

8.3.2 Epitaxial Crystallization of "Linear" Polymers, 243

8.3.3 Epitaxy of Helical Polymers, 245

8.3.4 Polymer/Polymer Epitaxy, 250

8.4 Epitaxial Crystallization: Further Issues and Examples, 252

8.4.1 Topographic versus Lattice Matching, 252

8.4.2 Epitaxy of Isotactic Polypropylene on Isotactic Polyvinylcyclohexane, 254

8.4.3 Epitaxy Involving Fold Surfaces of Polymer Crystals, 254

8.5 Epitaxial Crystallization: Some Issues and Applications, 256

8.5.1 Epitaxial Crystallization and the Design of New Nucleating Agents, 256

8.5.2 Epitaxial Crystallization and the Design of Composite Materials, 257

8.5.3 Conformational and Packing Energy Analysis of Polymer Epitaxy, 258

8.5.4 Epitaxy as a Means to Generate Oriented Opto- or Electroactive Materials, 259

8.6 Conclusions, 260

References, 262

9 Melting 265
Marek Pyda

9.1 Introduction to the Melting of Polymer Crystals,...

Details
Erscheinungsjahr: 2013
Fachbereich: Organische Chemie
Genre: Chemie
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 400 S.
ISBN-13: 9780470380239
ISBN-10: 0470380233
Sprache: Englisch
Einband: Gebunden
Redaktion: Piorkowska, Ewa
Rutledge, Gregory C
Herausgeber: Ewa Piorkowska/Gregory C Rutledge
Hersteller: Wiley
John Wiley & Sons
Maße: 284 x 223 x 30 mm
Von/Mit: Ewa Piorkowska (u. a.)
Erscheinungsdatum: 01.07.2013
Gewicht: 1,422 kg
Artikel-ID: 106196531
Über den Autor

DR. EWA PIORKOWSKA, is Professor and the Head of the Department of Polymer Structure at the Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Poland. Her research interests include crystallization, structure and properties of polymers, polymer blends, composites and nanocomposites.

DR. GREGORY C. RUTLEDGE, is the Lammot du Pont Professor in the Department of Chemical Engineering at the Massachusetts Institute of Technology. His research interests include polymer science and engineering, statistical thermodynamics, molecular simulation, and nanotechnology.

Inhaltsverzeichnis

Preface xiii

Contributors xv

1 Experimental Techniques 1
Benjamin S. Hsiao, Feng Zuo, and Yimin Mao, Christoph Schick

1.1 Introduction, 1

1.2 Optical Microscopy, 2

1.2.1 Reflection and Transmission Microscopy, 2

1.2.2 Contrast Modes, 2

1.2.3 Selected Applications, 3

1.3 Electron Microscopy, 5

1.3.1 Imaging Principle, 5

1.3.2 Sample Preparation, 6

1.3.3 Relevant Experimental Techniques, 7

1.3.4 Selected Applications, 8

1.4 Atomic Force Microscopy, 9

1.4.1 Imaging Principle, 9

1.4.2 Scanning Modes, 9

1.4.3 Comparison between AFM and EM, 10

1.4.4 Recent Development: Video AFM, 10

1.4.5 Selected Applications, 10

1.5 Nuclear Magnetic Resonance, 12

1.5.1 Chemical Shift, 13

1.5.2 Relevant Techniques, 13

1.5.3 Recent Development: Multidimensional NMR, 14

1.5.4 Selected Applications, 14

1.6 Scattering Techniques: X-Ray, Light, and Neutron, 15

1.6.1 Wide-Angle X-Ray Diffraction, 15

1.6.2 Small-Angle X-Ray Scattering, 17

1.6.3 Small-Angle Light Scattering, 19

1.6.4 Small-Angle Neutron Scattering, 21

1.7 Differential Scanning Calorimetry, 22

1.7.1 Modes of Operation, 22

1.7.2 Determination of Degree of Crystallinity, 25

1.8 Summary, 25

Acknowledgments, 26

References, 26

2 Crystal Structures of Polymers 31
Claudio De Rosa and Finizia Auriemma

2.1 Constitution and Confi guration of Polymer Chains, 31

2.2 Conformation of Polymer Chains in Crystals and Conformational Polymorphism, 33

2.3 Packing of Macromolecules in Polymer Crystals, 43

2.4 Symmetry Breaking, 49

2.5 Packing Effects on the Conformation of Polymer Chains in the Crystals: The Case of Aliphatic Polyamides, 50

2.6 Defects and Disorder in Polymer Crystals, 55

2.6.1 Substitutional Isomorphism of Different Chains, 56

2.6.2 Substitutional Isomorphism of Different Monomeric Units, 57

2.6.3 Conformational Isomorphism, 58

2.6.4 Disorder in the Stacking of Ordered Layers (Stacking Fault Disorder), 58

2.7 Crystal Habits, 60

2.7.1 Rounded Lateral Habits, 66

Acknowledgments, 67

References, 67

3 Structure of Polycrystalline Aggregates 73
Buckley Crist

3.1 Introduction, 73

3.2 Crystals Grown from Solution, 75

3.2.1 Facetted Monolayer Crystals from Dilute Solution, 75

3.2.2 Dendritic Crystals from Dilute Solution, 81

3.2.3 Growth Spirals in Dilute Solution, 85

3.2.4 Concentrated Solutions, 92

3.3 Crystals and Aggregates Grown from Molten Films, 94

3.3.1 Structures in Thin Films, 94

3.3.2 Structures in Ultrathin Films, 98

3.3.3 Edge-On Lamellae in Molten Films, 102

3.4 Spherulitic Aggregates, 104

3.4.1 Optical Properties of Spherulites, 105

3.4.2 Occurrence of Spherulites, 108

3.4.3 Development of Spherulites, 110

3.4.4 Banded Spherulites and Lamellar Twist, 116

Acknowledgments, 121

References, 121

4 Polymer Nucleation 125
Kiyoka N. Okada and Masamichi Hikosaka

4.1 Introduction, 126

4.2 Classical Nucleation Theory, 126

4.2.1 Nucleation Rate (I), 126

4.2.2 Free Energy for Formation of a Nucleus ¿G(N), 127

4.2.3 Free Energy for Formation of a Critical Nucleus (¿G*), 127

4.2.4 Shape of a Nucleus Is Related to Kinetic Parameters, 128

4.2.5 Diffusion, 128

4.3 Direct Observation of Nano-Nucleation by Synchrotron Radiation, 128

4.3.1 Introduction and Experimental Procedure, 128

4.3.2 Observation of Nano-Nucleation by SAXS, 128

4.3.3 Extended Guinier Plot Method and Iteration Method, 129

4.3.4 Kinetic Parameters and Size Distribution of the Nano-Nucleus, 130

4.3.5 Real Image of Nano-Nucleation, 131

4.3.6 Supercooling Dependence of Nano-nucleation, 133

4.3.7 Relationship between Nano-Nucleation and Macro-Crystallization, 133

4.4 Improvement of Nucleation Theory, 135

4.4.1 Introduction, 135

4.4.2 Nucleation Theory Based on Direct Observation of Nucleation, 135

4.4.3 Confirmation of the Theory by Overall Crystallinity, 137

4.5 Homogeneous Nucleation from the Bulk Melt under Elongational Flow, 139

4.5.1 Introduction and Case Study, 139

4.5.2 Formulation of Elongational Strain Rate e, 139

4.5.3 Nano-Oriented Crystals, 140

4.5.4 Evidence of Homogeneous Nucleation, 144

4.5.5 Nano-Nucleation Results in Ultrahigh Performance, 147

4.6 Heterogeneous Nucleation, 148

4.6.1 Introduction, 148

4.6.2 Experimental, 149

4.6.3 Role of Epitaxy in Heterogeneous Nucleation, 150

4.6.4 Acceleration Mechanism of Nucleation of Polymers by Nano-Sizing of Nucleating Agent, 153

4.7 Effect of Entanglement Density on the Nucleation Rate, 156

4.7.1 Introduction and Experimental, 156

4.7.2 Increase of ¿e Leads to a Decrease of I, 157

4.7.3 Change of ¿e with ¿t, 158

4.7.4 Two-Step Entangling Model, 159

4.8 Conclusion, 160

Acknowledgments, 161

References, 161

5 Growth of Polymer Crystals 165
Kohji Tashiro

5.1 Introduction, 165

5.1.1 Complex Behavior of Polymers, 165

5.2 Growth of Polymer Crystals from Solutions, 167

5.2.1 Single Crystals, 167

5.2.2 Crystallization from Solution under Shear, 168

5.2.3 Solution Casting Method, 168

5.3 Growth of Polymer Crystals from Melt, 169

5.3.1 Positive and Negative Spherulites, 169

5.3.2 Spherulite Morphology and Crystalline Modification, 170

5.3.3 Spherulite Patterns of Blend Samples, 172

5.4 Crystallization Mechanism of Polymer, 173

5.4.1 Basic Theory of Crystallization of Polymer, 173

5.4.2 Growth Rate of Spherulites, 177

5.5 Microscopically Viewed Structural Evolution in the Growing Polymer Crystals, 178

5.5.1 Experimental Techniques, 178

5.5.2 Structural Evolution in Isothermal Crystallization, 179

5.5.3 Shear-Induced Crystallization of the Melt, 186

5.6 Crystallization upon Heating from the Glassy State, 189

5.6.1 Cold Crystallization, 189

5.6.2 Solvent-Induced Crystallization of Polymer Glass, 189

5.7 Crystallization Phenomenon Induced by Tensile Force, 191

5.8 Photoinduced Formation and Growth of Polymer Crystals, 191

5.9 Conclusion, 192

References, 193

6 Computer Modeling of Polymer Crystallization 197
Gregory C. Rutledge

6.1 Introduction, 197

6.2 Methods, 198

6.2.1 Molecular Dynamics, 199

6.2.2 Langevin Dynamics, 200

6.2.3 Monte Carlo, 200

6.2.4 Kinetic Monte Carlo, 201

6.3 Single-Chain Behavior in Crystallization, 202

6.3.1 Solid-on-Solid Models, 202

6.3.2 Molecular and Langevin Dynamics, 203

6.4 Crystallization from the Melt, 204

6.4.1 Lattice Monte Carlo Simulations, 205

6.4.2 Molecular Dynamics Using Coarse-Grained Models, 206

6.4.3 Molecular Dynamics Using Atomistic Models, 207

6.5 Crystallization under Deformation or Flow, 208

6.6 Concluding Remarks, 210

References, 211

7 Overall Crystallization Kinetics 215
Ewa Piorkowska and Andrzej Galeski

7.1 Introduction, 215

7.2 Measurements, 216

7.3 Simulation, 217

7.4 Theories: Isothermal and Nonisothermal Crystallization, 218

7.4.1 Introductory Remarks, 218

7.4.2 Extended Volume Approach, 218

7.4.3 Probabilistic Approaches, 220

7.4.4 Isokinetic Model, 223

7.4.5 Rate Equations, 223

7.5 Complex Crystallization Conditions: General Models, 224

7.6 Factors Influencing the Overall Crystallization Kinetics, 224

7.6.1 Crystallization in a Uniform Temperature Field, 224

7.6.2 Crystallization in a Temperature Gradient, 225

7.6.3 Crystallization in a Confi ned Space, 226

7.6.4 Flow-Induced Crystallization, 228

7.7 Analysis of Crystallization Data, 230

7.7.1 Isothermal Crystallization, 230

7.7.2 Nonisothermal Crystallization, 231

7.8 Conclusions, 233

References, 234

8 Epitaxial Crystallization of Polymers: Means and Issues 237
Annette Thierry and Bernard A. Lotz

8.1 Introduction and History, 237

8.2 Means of Investigation of Epitaxial Crystallization, 239

8.2.1 Global Techniques, 239

8.2.2 Thin Film Techniques, 239

8.2.3 Sample Preparation Techniques, 240

8.2.4 Other Samples and Investigation Procedures, 241

8.3 Epitaxial Crystallization of Polymers, 241

8.3.1 General Principles, 241

8.3.2 Epitaxial Crystallization of "Linear" Polymers, 243

8.3.3 Epitaxy of Helical Polymers, 245

8.3.4 Polymer/Polymer Epitaxy, 250

8.4 Epitaxial Crystallization: Further Issues and Examples, 252

8.4.1 Topographic versus Lattice Matching, 252

8.4.2 Epitaxy of Isotactic Polypropylene on Isotactic Polyvinylcyclohexane, 254

8.4.3 Epitaxy Involving Fold Surfaces of Polymer Crystals, 254

8.5 Epitaxial Crystallization: Some Issues and Applications, 256

8.5.1 Epitaxial Crystallization and the Design of New Nucleating Agents, 256

8.5.2 Epitaxial Crystallization and the Design of Composite Materials, 257

8.5.3 Conformational and Packing Energy Analysis of Polymer Epitaxy, 258

8.5.4 Epitaxy as a Means to Generate Oriented Opto- or Electroactive Materials, 259

8.6 Conclusions, 260

References, 262

9 Melting 265
Marek Pyda

9.1 Introduction to the Melting of Polymer Crystals,...

Details
Erscheinungsjahr: 2013
Fachbereich: Organische Chemie
Genre: Chemie
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 400 S.
ISBN-13: 9780470380239
ISBN-10: 0470380233
Sprache: Englisch
Einband: Gebunden
Redaktion: Piorkowska, Ewa
Rutledge, Gregory C
Herausgeber: Ewa Piorkowska/Gregory C Rutledge
Hersteller: Wiley
John Wiley & Sons
Maße: 284 x 223 x 30 mm
Von/Mit: Ewa Piorkowska (u. a.)
Erscheinungsdatum: 01.07.2013
Gewicht: 1,422 kg
Artikel-ID: 106196531
Warnhinweis