Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
54,99 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
für lineare nicht viele grundlegend neue Erkenntnisse bringt.
für lineare nicht viele grundlegend neue Erkenntnisse bringt.
Inhaltsverzeichnis
I Sobolevräume.- §1 Bezeichnungen, Grundbegriffe, Distributionen.- §2 Geometrische Voraussetzungen an die Gebiete ?.- §3 Definitionen und Dichteeigenschaften der Sobolev-Slobodeckijschen Räume W2l(?).- §4 Der Transformationssatz und Sobolevräume auf differenzierbaren Mannigfaltigkeiten.- §5 Die Definition der Sobolevschen Räume durch die Fouriertransformation und Fortsetzungssätze.- §6 Stetige Einbettungen und das Lemma von Sobolev.- §7 Kompakte Einbettungen.- §8 Der Spuroperator.- §9 Die schwache Folgenkompaktheit und die Approximation der Ableitungen durch Differenzenquotienten.- II Elliptische Differentialoperatoren.- §10 Lineare Differentialoperatoren.- §11 Die Bedingung von Lopatinskij-apiro und Beispiele.- §12 Fredholmoperatoren.- §13 Der Hauptsatz und einige Sätze über den Index von elliptischen Randwertproblemen.- §14 Die Greenschen Formeln.- §15 Die adjungierte Randwertaufgabe und der Zusammenhang mit dem Bildraum des ursprünglichen Operators.- §16 Beispiele.- III Stark elliptische Differentialoperatoren und die Variationsmethode.- §17 Gelfandsche Dreier, der Satz von Lax-Milgram, V-elliptische und V-koerzive Operatoren.- §18 Die Bedingung von Agmon.- §19 Der Satz von Agmon: Bedingungen für die V-Koerzivität von stark elliptischen Differentialoperatoren.- §20 Die Regularität der Lösungen von stark elliptischen Gleichungen.- §21 Der Lösungssatz für stark elliptische Gleichungen und Beispiele.- §22 Der Schaudersche Fixpunktsatz und eine nichtlineare Aufgabe.- §23 Elliptische Randwertaufgaben für unbeschränkte Gebiete.- IV Parabolische Differentialoperatoren.- §24 Das Bochner-Integral.- §25 Distributionen mit Werten in Hilberträumen H und der Raum W(0, T).- §26 Die Existenz und Eindeutigkeit der Lösung einerparabolischen Differentialgleichung.- §27 Die Regularität der Lösungen der parabolischen Differentialgleichung.- §28 Beispiele.- V Hyperbolische Differentialoperatoren.- §29 Die Existenz und Eindeutigkeit der Lösung.- §30 Die Regularität der Lösungen der hyperbolischen Differentialgleichung.- §31 Beispiele.- VI Differenzenverfahren zur Berechnung der Lösung einer partiellen Differentialgleichung.- §32 Der funktionalanalytische Rahmen für Differenzenverfahren.- §33 Differenzenverfahren für elliptische Differentialgleichungen und für die Wellengleichung.- §34 Evolutionsgleichungen.- Funktions- und Distributionsräume.
Details
Erscheinungsjahr: | 1982 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Mathematische Leitfäden |
Inhalt: |
500 S.
19 s/w Illustr. 500 S. 19 Abb. |
ISBN-13: | 9783519022251 |
ISBN-10: | 3519022257 |
Sprache: | Deutsch |
Herstellernummer: | 85012267 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Wloka, Joseph |
Auflage: | Softcover reprint of the original 1st ed. 1982 |
Hersteller: |
Vieweg & Teubner
Vieweg+Teubner Verlag Mathematische Leitfäden |
Maße: | 244 x 170 x 28 mm |
Von/Mit: | Joseph Wloka |
Erscheinungsdatum: | 01.03.1982 |
Gewicht: | 0,867 kg |
Inhaltsverzeichnis
I Sobolevräume.- §1 Bezeichnungen, Grundbegriffe, Distributionen.- §2 Geometrische Voraussetzungen an die Gebiete ?.- §3 Definitionen und Dichteeigenschaften der Sobolev-Slobodeckijschen Räume W2l(?).- §4 Der Transformationssatz und Sobolevräume auf differenzierbaren Mannigfaltigkeiten.- §5 Die Definition der Sobolevschen Räume durch die Fouriertransformation und Fortsetzungssätze.- §6 Stetige Einbettungen und das Lemma von Sobolev.- §7 Kompakte Einbettungen.- §8 Der Spuroperator.- §9 Die schwache Folgenkompaktheit und die Approximation der Ableitungen durch Differenzenquotienten.- II Elliptische Differentialoperatoren.- §10 Lineare Differentialoperatoren.- §11 Die Bedingung von Lopatinskij-apiro und Beispiele.- §12 Fredholmoperatoren.- §13 Der Hauptsatz und einige Sätze über den Index von elliptischen Randwertproblemen.- §14 Die Greenschen Formeln.- §15 Die adjungierte Randwertaufgabe und der Zusammenhang mit dem Bildraum des ursprünglichen Operators.- §16 Beispiele.- III Stark elliptische Differentialoperatoren und die Variationsmethode.- §17 Gelfandsche Dreier, der Satz von Lax-Milgram, V-elliptische und V-koerzive Operatoren.- §18 Die Bedingung von Agmon.- §19 Der Satz von Agmon: Bedingungen für die V-Koerzivität von stark elliptischen Differentialoperatoren.- §20 Die Regularität der Lösungen von stark elliptischen Gleichungen.- §21 Der Lösungssatz für stark elliptische Gleichungen und Beispiele.- §22 Der Schaudersche Fixpunktsatz und eine nichtlineare Aufgabe.- §23 Elliptische Randwertaufgaben für unbeschränkte Gebiete.- IV Parabolische Differentialoperatoren.- §24 Das Bochner-Integral.- §25 Distributionen mit Werten in Hilberträumen H und der Raum W(0, T).- §26 Die Existenz und Eindeutigkeit der Lösung einerparabolischen Differentialgleichung.- §27 Die Regularität der Lösungen der parabolischen Differentialgleichung.- §28 Beispiele.- V Hyperbolische Differentialoperatoren.- §29 Die Existenz und Eindeutigkeit der Lösung.- §30 Die Regularität der Lösungen der hyperbolischen Differentialgleichung.- §31 Beispiele.- VI Differenzenverfahren zur Berechnung der Lösung einer partiellen Differentialgleichung.- §32 Der funktionalanalytische Rahmen für Differenzenverfahren.- §33 Differenzenverfahren für elliptische Differentialgleichungen und für die Wellengleichung.- §34 Evolutionsgleichungen.- Funktions- und Distributionsräume.
Details
Erscheinungsjahr: | 1982 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Mathematische Leitfäden |
Inhalt: |
500 S.
19 s/w Illustr. 500 S. 19 Abb. |
ISBN-13: | 9783519022251 |
ISBN-10: | 3519022257 |
Sprache: | Deutsch |
Herstellernummer: | 85012267 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Wloka, Joseph |
Auflage: | Softcover reprint of the original 1st ed. 1982 |
Hersteller: |
Vieweg & Teubner
Vieweg+Teubner Verlag Mathematische Leitfäden |
Maße: | 244 x 170 x 28 mm |
Von/Mit: | Joseph Wloka |
Erscheinungsdatum: | 01.03.1982 |
Gewicht: | 0,867 kg |
Warnhinweis