Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben
Taschenbuch von Christian Kanzow (u. a.)
Sprache: Deutsch

44,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Dieses Buch bietet eine umfassende und aktuelle Darstellung des Themenbereichs "Numerische Lösung unrestringierter Optimierungsaufgaben mit differenzierbarer Zielfunktion", die über die bislang existierende Lehrbuchliteratur deutlich hinausgeht. Es wendet sich in erster Linie an Studierende der Mathematik, der Wirtschaftsmathematik und der Technomathematik in mittleren und höheren Semestern, sollte aber auch erfahrenen Mathematikern einen Zugang zur aktuellen Forschung und Anwendern einen Überblick über die vorhandenen Verfahren geben. Alle besprochenen Verfahren sind ausführlich motiviert und mit einer vollständigen Konvergenzanalyse versehen, und es werden zu allen konkreten Algorithmen Tabellen mit numerischen Resultaten angegeben. In Anhängen sind die benötigten Grundlagen aus der mehrdimensionalen Analysis und der linearen Algebra sowie Testbeispiele zusammengestellt. Abgerundet wird das Buch durch ca. 150 Aufgaben unterschiedlichen Umfangs und Schwierigkeitsgrades.
Dieses Buch bietet eine umfassende und aktuelle Darstellung des Themenbereichs "Numerische Lösung unrestringierter Optimierungsaufgaben mit differenzierbarer Zielfunktion", die über die bislang existierende Lehrbuchliteratur deutlich hinausgeht. Es wendet sich in erster Linie an Studierende der Mathematik, der Wirtschaftsmathematik und der Technomathematik in mittleren und höheren Semestern, sollte aber auch erfahrenen Mathematikern einen Zugang zur aktuellen Forschung und Anwendern einen Überblick über die vorhandenen Verfahren geben. Alle besprochenen Verfahren sind ausführlich motiviert und mit einer vollständigen Konvergenzanalyse versehen, und es werden zu allen konkreten Algorithmen Tabellen mit numerischen Resultaten angegeben. In Anhängen sind die benötigten Grundlagen aus der mehrdimensionalen Analysis und der linearen Algebra sowie Testbeispiele zusammengestellt. Abgerundet wird das Buch durch ca. 150 Aufgaben unterschiedlichen Umfangs und Schwierigkeitsgrades.
Zusammenfassung
Das Buch bietet eine umfassende, aktuelle und deutlich über die existierende Literatur hinausgehende Darstellung des Themenbereichs "Numerische Lösung untestringerter Optimierungsaufgaben mit differenzierbarer Zielfunktion". Die erforderlichen mathematischen Grundlagen sowie Testbeispiele werden in Anhängen bereitgestellt. Sämtliche besprochenen Verfahren sind ausführlich motiviert und mit einer vollständigen Konvergenzanalyse versehen. Die erforderlichen Grundlagen aus der mehrdimensionalen Analysis und der Linearen Algebra sowie Testbeispiele werden im Anhang bereitgestellt. Neben Tabellen mit numerischen Resultaten zu allen konkreten Algorithmen finden sich auch ca. 150 ausgewählte Aufgaben.
Inhaltsverzeichnis
1. Einführung.- 2. Optimalitätskriterien.- Aufgaben.- 3. Konvexe Funktionen.- Aufgaben.- 4. Ein allgemeines Abstiegsverfahren.- Aufgaben.- 5. Schrittweitenstrategien.- 5.1 Armijo-Regel.- 5.2 Wolfe-Powell-Schrittweitenstrategie.- 5.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 6. Schrittweitenalgorithmen.- 6.1 Armijo-Regel.- 6.2 Wolfe-Powell-Schrittweitenstrategie.- 6.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 7. Konvergenzraten und Charakterisierungen.- Aufgaben.- 8. Gradientenverfahren.- 8.1 Das Gradientenverfahren.- 8.2 Konvergenz bei quadratischer Zielfunktion.- 8.3 Gradientenähnliche Verfahren.- Aufgaben.- 9. Newton-Verfahren.- 9.1 Das lokale Newton-Verfahren.- 9.2 Ein globalisiertes Newton-Verfahren.- 9.3 Hinweise zur Implementation.- 9.4 Numerische Resultate.- Aufgaben.- 10. Inexakte Newton-Verfahren.- 10.1 Das lokale inexakte Newton-Verfahren.- 10.2 Ein globalisiertes inexaktes Newton-Verfahren.- 10.3 Hinweise zur Implementation.- 10.4 Numerische Resultate.- Aufgaben.- 11. Quasi-Newton-Verfahren.- 11.1 Herleitung einiger Quasi-Newton-Formeln.- 11.2 Lokale Konvergenz des PSB-Verfahrens.- 11.3 Lokale Konvergenz des BFGS-Verfahrens.- 11.4 Globalisierte Quasi-Newton-Verfahren.- 11.5 Konvergenz bei gleichmäßig konvexen Funktionen.- 11.6 Weitere Quasi-Newton-Formeln.- 11.7 Hinweise zur Implementation.- 11.8 Numerische Resultate.- Aufgaben.- 12. Limited Memory Quasi-Newton-Verfahren.- 12.1 Herleitung des Limited Memory BFGS-Verfahrens.- 12.2 Konvergenz bei gleichmäßig konvexen Funktionen.- 12.3 Hinweise zur Implementation.- 12.4 Numerische Resultate.- Aufgaben.- 13. CG-Verfahren.- 13.1 Das CG-Verfahren für lineare Gleichungssysteme.- 13.2 Das Fletcher-Reeves-Verfahren.- 13.3 Das Polak-Ribière-Verfahren.- 13.4 Ein modifiziertesPolak-Ribière-Verfahren.- 13.5 Weitere CG-Verfahren.- 13.6 Numerische Resultate.- Aufgaben.- 14. Trust-Region-Verfahren.- 14.1 Das Trust-Region-Teilproblem.- 14.2 Die KKT-Bedingungen.- 14.3 Eine exakte Penalty-Funktion.- 14.4 Zur Lösung des Trust-Region-Teilproblems.- 14.5 Trust-Region-Newton-Verfahren.- 14.6 Teilraum-Trust-Region-Newton-Verfahren.- 14.7 Inexakte Trust-Region-Newton-Verfahren.- 14.8 Trust-Region-Quasi-Newton-Verfahren.- 14.9 Numerische Resultate.- Aufgaben.- A. Grundlagen aus der mehrdimensionalen Analysis.- B. Grundlagen aus der linearen Algebra.- C. Testbeispiele.
Details
Erscheinungsjahr: 1999
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Springer-Lehrbuch
Inhalt: xii
350 S.
3 s/w Illustr.
350 S. 3 Abb.
ISBN-13: 9783540662204
ISBN-10: 3540662200
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Kanzow, Christian
Geiger, Carl
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Springer-Lehrbuch
Maße: 235 x 155 x 21 mm
Von/Mit: Christian Kanzow (u. a.)
Erscheinungsdatum: 09.09.1999
Gewicht: 0,563 kg
Artikel-ID: 106693856
Zusammenfassung
Das Buch bietet eine umfassende, aktuelle und deutlich über die existierende Literatur hinausgehende Darstellung des Themenbereichs "Numerische Lösung untestringerter Optimierungsaufgaben mit differenzierbarer Zielfunktion". Die erforderlichen mathematischen Grundlagen sowie Testbeispiele werden in Anhängen bereitgestellt. Sämtliche besprochenen Verfahren sind ausführlich motiviert und mit einer vollständigen Konvergenzanalyse versehen. Die erforderlichen Grundlagen aus der mehrdimensionalen Analysis und der Linearen Algebra sowie Testbeispiele werden im Anhang bereitgestellt. Neben Tabellen mit numerischen Resultaten zu allen konkreten Algorithmen finden sich auch ca. 150 ausgewählte Aufgaben.
Inhaltsverzeichnis
1. Einführung.- 2. Optimalitätskriterien.- Aufgaben.- 3. Konvexe Funktionen.- Aufgaben.- 4. Ein allgemeines Abstiegsverfahren.- Aufgaben.- 5. Schrittweitenstrategien.- 5.1 Armijo-Regel.- 5.2 Wolfe-Powell-Schrittweitenstrategie.- 5.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 6. Schrittweitenalgorithmen.- 6.1 Armijo-Regel.- 6.2 Wolfe-Powell-Schrittweitenstrategie.- 6.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 7. Konvergenzraten und Charakterisierungen.- Aufgaben.- 8. Gradientenverfahren.- 8.1 Das Gradientenverfahren.- 8.2 Konvergenz bei quadratischer Zielfunktion.- 8.3 Gradientenähnliche Verfahren.- Aufgaben.- 9. Newton-Verfahren.- 9.1 Das lokale Newton-Verfahren.- 9.2 Ein globalisiertes Newton-Verfahren.- 9.3 Hinweise zur Implementation.- 9.4 Numerische Resultate.- Aufgaben.- 10. Inexakte Newton-Verfahren.- 10.1 Das lokale inexakte Newton-Verfahren.- 10.2 Ein globalisiertes inexaktes Newton-Verfahren.- 10.3 Hinweise zur Implementation.- 10.4 Numerische Resultate.- Aufgaben.- 11. Quasi-Newton-Verfahren.- 11.1 Herleitung einiger Quasi-Newton-Formeln.- 11.2 Lokale Konvergenz des PSB-Verfahrens.- 11.3 Lokale Konvergenz des BFGS-Verfahrens.- 11.4 Globalisierte Quasi-Newton-Verfahren.- 11.5 Konvergenz bei gleichmäßig konvexen Funktionen.- 11.6 Weitere Quasi-Newton-Formeln.- 11.7 Hinweise zur Implementation.- 11.8 Numerische Resultate.- Aufgaben.- 12. Limited Memory Quasi-Newton-Verfahren.- 12.1 Herleitung des Limited Memory BFGS-Verfahrens.- 12.2 Konvergenz bei gleichmäßig konvexen Funktionen.- 12.3 Hinweise zur Implementation.- 12.4 Numerische Resultate.- Aufgaben.- 13. CG-Verfahren.- 13.1 Das CG-Verfahren für lineare Gleichungssysteme.- 13.2 Das Fletcher-Reeves-Verfahren.- 13.3 Das Polak-Ribière-Verfahren.- 13.4 Ein modifiziertesPolak-Ribière-Verfahren.- 13.5 Weitere CG-Verfahren.- 13.6 Numerische Resultate.- Aufgaben.- 14. Trust-Region-Verfahren.- 14.1 Das Trust-Region-Teilproblem.- 14.2 Die KKT-Bedingungen.- 14.3 Eine exakte Penalty-Funktion.- 14.4 Zur Lösung des Trust-Region-Teilproblems.- 14.5 Trust-Region-Newton-Verfahren.- 14.6 Teilraum-Trust-Region-Newton-Verfahren.- 14.7 Inexakte Trust-Region-Newton-Verfahren.- 14.8 Trust-Region-Quasi-Newton-Verfahren.- 14.9 Numerische Resultate.- Aufgaben.- A. Grundlagen aus der mehrdimensionalen Analysis.- B. Grundlagen aus der linearen Algebra.- C. Testbeispiele.
Details
Erscheinungsjahr: 1999
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Springer-Lehrbuch
Inhalt: xii
350 S.
3 s/w Illustr.
350 S. 3 Abb.
ISBN-13: 9783540662204
ISBN-10: 3540662200
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Kanzow, Christian
Geiger, Carl
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Springer-Lehrbuch
Maße: 235 x 155 x 21 mm
Von/Mit: Christian Kanzow (u. a.)
Erscheinungsdatum: 09.09.1999
Gewicht: 0,563 kg
Artikel-ID: 106693856
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte