Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
55,90 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Requiring no more than a basic knowledge of abstract algebra, this textbook presents the basics of algebraic number theory in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights key arguments. There are several hundred exercises, providing a wealth of both computational and theoretical practice, as well as appendices summarizing the necessary background in algebra.
Now in a newly typeset edition including a foreword by Barry Mazur, this highly regarded textbook will continue to provide lecturers and their students with an invaluable resource and a compelling gateway to a beautiful subject.
From the reviews:
¿A thoroughly delightful introduction to algebraic number theory¿ ¿ Ezra Brown in the Mathematical Reviews
¿An excellent basis for an introductory graduate course in algebraic number theory¿ ¿ Harold Edwards in the Bulletin of the American Mathematical Society
Now in a newly typeset edition including a foreword by Barry Mazur, this highly regarded textbook will continue to provide lecturers and their students with an invaluable resource and a compelling gateway to a beautiful subject.
From the reviews:
¿A thoroughly delightful introduction to algebraic number theory¿ ¿ Ezra Brown in the Mathematical Reviews
¿An excellent basis for an introductory graduate course in algebraic number theory¿ ¿ Harold Edwards in the Bulletin of the American Mathematical Society
Requiring no more than a basic knowledge of abstract algebra, this textbook presents the basics of algebraic number theory in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights key arguments. There are several hundred exercises, providing a wealth of both computational and theoretical practice, as well as appendices summarizing the necessary background in algebra.
Now in a newly typeset edition including a foreword by Barry Mazur, this highly regarded textbook will continue to provide lecturers and their students with an invaluable resource and a compelling gateway to a beautiful subject.
From the reviews:
¿A thoroughly delightful introduction to algebraic number theory¿ ¿ Ezra Brown in the Mathematical Reviews
¿An excellent basis for an introductory graduate course in algebraic number theory¿ ¿ Harold Edwards in the Bulletin of the American Mathematical Society
Now in a newly typeset edition including a foreword by Barry Mazur, this highly regarded textbook will continue to provide lecturers and their students with an invaluable resource and a compelling gateway to a beautiful subject.
From the reviews:
¿A thoroughly delightful introduction to algebraic number theory¿ ¿ Ezra Brown in the Mathematical Reviews
¿An excellent basis for an introductory graduate course in algebraic number theory¿ ¿ Harold Edwards in the Bulletin of the American Mathematical Society
Über den Autor
Daniel A. Marcus received his PhD from Harvard University in 1972. He was a J. Willard Gibbs Instructor at Yale University from 1972 to 1974 and Professor of Mathematics at California State Polytechnic University, Pomona, from 1979 to 2004. He published research papers in the areas of graph theory, number theory and combinatorics. The present book grew out of a lecture course given by the author at Yale University.
Zusammenfassung
Contains over 300 exercises
Assumes only basic abstract algebra
Covers topics leading up to class field theory
Inhaltsverzeichnis
1: A Special Case of Fermat's Conjecture.- 2: Number Fields and Number Rings.- 3: Prime Decomposition in Number Rings.- 4: Galois Theory Applied to Prime Decomposition.- 5: The Ideal Class Group and the Unit Group.- 6: The Distribution of Ideals in a Number Ring.- 7: The Dedekind Zeta Function and the Class Number Formula.- 8: The Distribution of Primes and an Introduction to Class Field Theory.- Appendix A: Commutative Rings and Ideals.- Appendix B: Galois Theory for Subfields of C.- Appendix C: Finite Fields and Rings.- Appendix D: Two Pages of Primes.- Further Reading.- Index of Theorems.- List of Symbols.
Details
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Universitext |
Inhalt: |
xviii
203 S. |
ISBN-13: | 9783319902326 |
ISBN-10: | 3319902326 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-90232-6 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Marcus, Daniel A. |
Auflage: | 2nd ed. 2018 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Universitext |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 13 mm |
Von/Mit: | Daniel A. Marcus |
Erscheinungsdatum: | 23.07.2018 |
Gewicht: | 0,347 kg |
Über den Autor
Daniel A. Marcus received his PhD from Harvard University in 1972. He was a J. Willard Gibbs Instructor at Yale University from 1972 to 1974 and Professor of Mathematics at California State Polytechnic University, Pomona, from 1979 to 2004. He published research papers in the areas of graph theory, number theory and combinatorics. The present book grew out of a lecture course given by the author at Yale University.
Zusammenfassung
Contains over 300 exercises
Assumes only basic abstract algebra
Covers topics leading up to class field theory
Inhaltsverzeichnis
1: A Special Case of Fermat's Conjecture.- 2: Number Fields and Number Rings.- 3: Prime Decomposition in Number Rings.- 4: Galois Theory Applied to Prime Decomposition.- 5: The Ideal Class Group and the Unit Group.- 6: The Distribution of Ideals in a Number Ring.- 7: The Dedekind Zeta Function and the Class Number Formula.- 8: The Distribution of Primes and an Introduction to Class Field Theory.- Appendix A: Commutative Rings and Ideals.- Appendix B: Galois Theory for Subfields of C.- Appendix C: Finite Fields and Rings.- Appendix D: Two Pages of Primes.- Further Reading.- Index of Theorems.- List of Symbols.
Details
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Universitext |
Inhalt: |
xviii
203 S. |
ISBN-13: | 9783319902326 |
ISBN-10: | 3319902326 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-90232-6 |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Marcus, Daniel A. |
Auflage: | 2nd ed. 2018 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Universitext |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 13 mm |
Von/Mit: | Daniel A. Marcus |
Erscheinungsdatum: | 23.07.2018 |
Gewicht: | 0,347 kg |
Sicherheitshinweis