Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
54,99 €
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Kategorien:
Beschreibung
1. Hilfsmittel aus Topologie und Funktionalanalysis.- § 1. Metrische Räume.- § 2. Normierte Räume.- § 3. Differentiation in Banach-Räumen.- § 4. Beispiele.- § 5. Fortsetzungen stetiger Operatoren.- § 6. Differenzierbare Abbildungen des Rn.- 2. Der Abbildungsgrad von Brouwer.- § 7. Der Abbildungsgrad für stetig differenzierbare Abbildungen.- § 8. Der Abbildungsgrad für stetige Abbildungen.- § 9. Der Fixpunktsatz von Brouwer.- § 10. Der Satz von Borsuk.- § 11. Die Produkteigenschaft.- § 12. Der Abbildungsgrad stetiger Abbildungen auf unbeschränkten Mengen.- § 13. Bemerkungen.- 3. Der Leray-Schauder-Grad.- § 14. Kompakte Operatoren.- § 15. Der Abbildungsgrad in endlichdimensionalen normierten Räumen.- § 16, Definition und Eigenschaften des Leray-Schauder-Grades.- § 17. Eigenwerte kompakter Operatoren.- § 18. Der Satz von Borsuk.- § 19. Die Produkteigenschaft des LS-Grades.- § 20. Lineare kompakte Operatoren.- 4. Fixpunkte kompakter Operatoren.- § 21. Existenz von Fixpunkten.- § 22. Eigenschaften der Fixpunktmenge.- § 23. Isolierte Fixpunkte.- § 24. Nichtlineare Eigenwertprobleme Übungsaufgaben.- 5. Der Leray-Schauder-Grad in lokalkonvexen Räumen.- § 25. Hilfsmittel aus der Theorie topologischer Vektorräume.- § 26. Kompakte Operatoren.- § 27. Der Fixpunktsatz von A. Tychonoff.- 6. Abbildungsgrad und Projektionsmethoden.- § 28. Projektionsschemen.- § 29. Projektionskompakte Operatoren.- § 30. Ein Abbildungsgrad für P-kompakte Operatoren.- § 31. Fixpunktsätze für P-kompakte Operatoren.- § 32. Schlußbemerkungen.
1. Hilfsmittel aus Topologie und Funktionalanalysis.- § 1. Metrische Räume.- § 2. Normierte Räume.- § 3. Differentiation in Banach-Räumen.- § 4. Beispiele.- § 5. Fortsetzungen stetiger Operatoren.- § 6. Differenzierbare Abbildungen des Rn.- 2. Der Abbildungsgrad von Brouwer.- § 7. Der Abbildungsgrad für stetig differenzierbare Abbildungen.- § 8. Der Abbildungsgrad für stetige Abbildungen.- § 9. Der Fixpunktsatz von Brouwer.- § 10. Der Satz von Borsuk.- § 11. Die Produkteigenschaft.- § 12. Der Abbildungsgrad stetiger Abbildungen auf unbeschränkten Mengen.- § 13. Bemerkungen.- 3. Der Leray-Schauder-Grad.- § 14. Kompakte Operatoren.- § 15. Der Abbildungsgrad in endlichdimensionalen normierten Räumen.- § 16, Definition und Eigenschaften des Leray-Schauder-Grades.- § 17. Eigenwerte kompakter Operatoren.- § 18. Der Satz von Borsuk.- § 19. Die Produkteigenschaft des LS-Grades.- § 20. Lineare kompakte Operatoren.- 4. Fixpunkte kompakter Operatoren.- § 21. Existenz von Fixpunkten.- § 22. Eigenschaften der Fixpunktmenge.- § 23. Isolierte Fixpunkte.- § 24. Nichtlineare Eigenwertprobleme Übungsaufgaben.- 5. Der Leray-Schauder-Grad in lokalkonvexen Räumen.- § 25. Hilfsmittel aus der Theorie topologischer Vektorräume.- § 26. Kompakte Operatoren.- § 27. Der Fixpunktsatz von A. Tychonoff.- 6. Abbildungsgrad und Projektionsmethoden.- § 28. Projektionsschemen.- § 29. Projektionskompakte Operatoren.- § 30. Ein Abbildungsgrad für P-kompakte Operatoren.- § 31. Fixpunktsätze für P-kompakte Operatoren.- § 32. Schlußbemerkungen.
Inhaltsverzeichnis
1. Hilfsmittel aus Topologie und Funktionalanalysis.- § 1. Metrische Räume.- § 2. Normierte Räume.- § 3. Differentiation in Banach-Räumen.- § 4. Beispiele.- § 5. Fortsetzungen stetiger Operatoren.- § 6. Differenzierbare Abbildungen des Rn.- 2. Der Abbildungsgrad von Brouwer.- § 7. Der Abbildungsgrad für stetig differenzierbare Abbildungen.- § 8. Der Abbildungsgrad für stetige Abbildungen.- § 9. Der Fixpunktsatz von Brouwer.- § 10. Der Satz von Borsuk.- § 11. Die Produkteigenschaft.- § 12. Der Abbildungsgrad stetiger Abbildungen auf unbeschränkten Mengen.- § 13. Bemerkungen.- 3. Der Leray-Schauder-Grad.- § 14. Kompakte Operatoren.- § 15. Der Abbildungsgrad in endlichdimensionalen normierten Räumen.- § 16, Definition und Eigenschaften des Leray-Schauder-Grades.- § 17. Eigenwerte kompakter Operatoren.- § 18. Der Satz von Borsuk.- § 19. Die Produkteigenschaft des LS-Grades.- § 20. Lineare kompakte Operatoren.- 4. Fixpunkte kompakter Operatoren.- § 21. Existenz von Fixpunkten.- § 22. Eigenschaften der Fixpunktmenge.- § 23. Isolierte Fixpunkte.- § 24. Nichtlineare Eigenwertprobleme Übungsaufgaben.- 5. Der Leray-Schauder-Grad in lokalkonvexen Räumen.- § 25. Hilfsmittel aus der Theorie topologischer Vektorräume.- § 26. Kompakte Operatoren.- § 27. Der Fixpunktsatz von A. Tychonoff.- 6. Abbildungsgrad und Projektionsmethoden.- § 28. Projektionsschemen.- § 29. Projektionskompakte Operatoren.- § 30. Ein Abbildungsgrad für P-kompakte Operatoren.- § 31. Fixpunktsätze für P-kompakte Operatoren.- § 32. Schlußbemerkungen.
Details
| Fachbereich: | Analysis |
|---|---|
| Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
| Rubrik: | Naturwissenschaften & Technik |
| Medium: | Taschenbuch |
| Inhalt: |
viii
134 S. |
| ISBN-13: | 9783540068884 |
| ISBN-10: | 3540068880 |
| Sprache: | Deutsch |
| Einband: | Kartoniert / Broschiert |
| Autor: | Deimling, K. |
| Hersteller: |
Springer
Springer-Verlag GmbH Springer Berlin Heidelberg |
| Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
| Maße: | 244 x 170 x 9 mm |
| Von/Mit: | K. Deimling |
| Gewicht: | 0,262 kg |