Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Nichtlineare Dynamik, Bifurkation und Chaotische Systeme
Taschenbuch von Klaus Brod (u. a.)
Sprache: Deutsch

39,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
Ein Buch über nichtlineare Dynamik und Übergang ins Chaos zu schreiben, bedeutet, sich mit zwei Extremen auseinandersetzen zu müssen. Zum einen besteht die Gefahr, über der Schönheit der graphischen Darstellung die mathematische Beschreibung zu vergessen und damit zum Stil eines Bilderbuches abzurutschen. Eine derartige Vorgangsweise spricht zwar eine relativ großen Leserkreis an und wirkt daher auflagenfördernd, bedeutet aber nicht unbedingt die Vermittlung fundamentaler Kenntnisse. Andererseits wäre es leicht möglich, den mathematischen Abstrakti­ onsgrad überzubetonen und damit ein rein mathematisches Buch zu schreiben, was wiederum der Anwendung der Theorie nicht förderlich ist. Man kann jedoch mit Recht sagen, daß die nichtlineare Dynamik von ihren Anwendungen in allen Teilgebieten der Naturwissenschaften (Physik, Chemie, Biologie, Ingenieurwissenschaften, etc. ) aber auch z. 8. in der Ökonomie "lebt". Tausende Veröffentlichungen der letzten Jahrzehnte in Fach- und populärwissenschaft­ lichen Zeitschriften belegen dies nachhaltig. Ein anderer Aspekt der üblichen Darstellung nichtlinearer Dynamik besteht in dem Konzept qualitativerMathematik. Dies bedeutet, daß man gewisse Klassen von Problemen im Hinblick auf das Auftreten bestimmter Eigenschaften (z. 8. von Attraktoren, Bifurkationen, etc. ) unter­ sucht. Die Suche nach Kriterien für das Auftreten dieser Phänomene steht dabei im Mittelpunkt, nicht die explizite Berechnung von Lösungen wie in der traditionellen Dynamik. Wir, die Auto­ ren dieses Buches, sind, wie wohl auch die überwiegende Mehrheit unserer Leser, "linear aus­ gebildet" worden.
Ein Buch über nichtlineare Dynamik und Übergang ins Chaos zu schreiben, bedeutet, sich mit zwei Extremen auseinandersetzen zu müssen. Zum einen besteht die Gefahr, über der Schönheit der graphischen Darstellung die mathematische Beschreibung zu vergessen und damit zum Stil eines Bilderbuches abzurutschen. Eine derartige Vorgangsweise spricht zwar eine relativ großen Leserkreis an und wirkt daher auflagenfördernd, bedeutet aber nicht unbedingt die Vermittlung fundamentaler Kenntnisse. Andererseits wäre es leicht möglich, den mathematischen Abstrakti­ onsgrad überzubetonen und damit ein rein mathematisches Buch zu schreiben, was wiederum der Anwendung der Theorie nicht förderlich ist. Man kann jedoch mit Recht sagen, daß die nichtlineare Dynamik von ihren Anwendungen in allen Teilgebieten der Naturwissenschaften (Physik, Chemie, Biologie, Ingenieurwissenschaften, etc. ) aber auch z. 8. in der Ökonomie "lebt". Tausende Veröffentlichungen der letzten Jahrzehnte in Fach- und populärwissenschaft­ lichen Zeitschriften belegen dies nachhaltig. Ein anderer Aspekt der üblichen Darstellung nichtlinearer Dynamik besteht in dem Konzept qualitativerMathematik. Dies bedeutet, daß man gewisse Klassen von Problemen im Hinblick auf das Auftreten bestimmter Eigenschaften (z. 8. von Attraktoren, Bifurkationen, etc. ) unter­ sucht. Die Suche nach Kriterien für das Auftreten dieser Phänomene steht dabei im Mittelpunkt, nicht die explizite Berechnung von Lösungen wie in der traditionellen Dynamik. Wir, die Auto­ ren dieses Buches, sind, wie wohl auch die überwiegende Mehrheit unserer Leser, "linear aus­ gebildet" worden.
Über den Autor
Prof. Dr.-Ing. Peter Plaschko lehrt an der Universidad Autónoma Metropolitana, Mexico. Prof. Dr. rer. nat. Klaus Brod an der Fachhochschule Wiesbaden
Inhaltsverzeichnis
1 Einleitung.- 2 Diskrete Systeme.- 2.1 Fixpunkte.- 2.2 Lineare und nichtlineare Abbildungen.- 2.3 Abbildungen mit chaotischem Verhalten.- 2.4 Die Poincaré-Abbildung.- Anhang A (Verallgemeinerte Eigenvektoren und Jordan-Formen).- Aufgaben.- 3 Kontinuierliche dynamische Systeme.- 3.1 Definitionen, Existenz- und Eindeutigkeitssätze.- 3.2 Eigenschaften der Lösungen von gewöhnlichen Differentialgleichungen.- 3.3 Fixpunkte.- 3.4 Hamilton-Systeme.- 3.5 Zentrale Mannigfaltigkeiten.- 3.6 Normalformen.- Aufgaben.- 4 Bifurkationen.- 4.1 Äquivalente und konjugierte dynamische Systeme, strukturelle Stabilität.- 4.2 Verzweigungs-Grundtypen.- 4.3 Die Sattel-Knoten-Bifurkation.- 4.4 Die transkritische Verzweigung.- 4.5 Die Pitchfork-Bifurkation.- 4.6 Die Hopf-Bifurkation.- 4.7 Methode der Projektionen.- 4.8 Stabilität periodischer Lösungen.- Anhang A (Fredholm-Alternative).- Anhang B (Hopf-Bifurkationen in kontinuierlichen Systemen).- Aufgaben.- 5 Asymptotische Methoden.- 5.1 Die Mittelwert-Methode.- 5.2 Beispiele.- 5.3 Schwach nichtlineare Oszillatoren.- 5.4 Die Viel variablen-Methode.- Aufgaben.- 6 Homokline Bifurkationen.- 6.1 Die Standardabbildung.- 6.2 Sattelpunkte flächenerhaltender Abbildungen.- 6.3 Elliptische Fixpunkte flächenerhaltender Abbildungen und KAM-Kurven.- 6.4 Winkel- und Wirkungsvariable.- 6.5 Schwach gestörte Hamilton-Systeme.- 6.6 Das Melnikov-Kriterium.- 6.7 Verallgemeinerungen des Melnikov-Kriteriums.- 6.8 Das Shilnikov-Phänomen.- Aufgaben.- 7 Bifurkationen mit höherer Ko-Dimension.- 7.1 Verallgemeinerung der Grundtypen von Bifurkationen eindimensionaler Systeme.- 7.2 Die Ko-Dimension dynamischer Systeme.- 7.3 Dynamik von Bifurkationen mit Ko-Dimension Zwei.- Anhang A Versale Entfaltung von Matrizen.- Aufgaben.- Quantitative Methoden derBeschreibung nichtlinearer und chaotischer Systeme.- 8.1 Der (Phasen-)Fluß autonomer Vektorfelder.- 8.2 Nicht-autonome dynamische Systeme.- 8.3 Zur Begriffsbildung bei chaotischen Systemen.- 8.4 Der Lyapunov-Exponent.- 8.5 Die Autokorrelationsfunktion.- 8.6 Das Leistungsspektrum.- 8.7 Fraktale Strukturen und Dimensionen.- 8.8 Rekonstruktion eines Attraktors aus einer Zeitreihe.- Aufgaben.- Literatur.- Sachwortverzeichnis.
Details
Erscheinungsjahr: 1995
Fachbereich: Analysis
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: viii
232 S.
5 s/w Illustr.
232 S. 5 Abb.
ISBN-13: 9783528065607
ISBN-10: 3528065605
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Brod, Klaus
Plaschko, Peter
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 244 x 170 x 14 mm
Von/Mit: Klaus Brod (u. a.)
Erscheinungsdatum: 01.01.1995
Gewicht: 0,429 kg
Artikel-ID: 102163461
Über den Autor
Prof. Dr.-Ing. Peter Plaschko lehrt an der Universidad Autónoma Metropolitana, Mexico. Prof. Dr. rer. nat. Klaus Brod an der Fachhochschule Wiesbaden
Inhaltsverzeichnis
1 Einleitung.- 2 Diskrete Systeme.- 2.1 Fixpunkte.- 2.2 Lineare und nichtlineare Abbildungen.- 2.3 Abbildungen mit chaotischem Verhalten.- 2.4 Die Poincaré-Abbildung.- Anhang A (Verallgemeinerte Eigenvektoren und Jordan-Formen).- Aufgaben.- 3 Kontinuierliche dynamische Systeme.- 3.1 Definitionen, Existenz- und Eindeutigkeitssätze.- 3.2 Eigenschaften der Lösungen von gewöhnlichen Differentialgleichungen.- 3.3 Fixpunkte.- 3.4 Hamilton-Systeme.- 3.5 Zentrale Mannigfaltigkeiten.- 3.6 Normalformen.- Aufgaben.- 4 Bifurkationen.- 4.1 Äquivalente und konjugierte dynamische Systeme, strukturelle Stabilität.- 4.2 Verzweigungs-Grundtypen.- 4.3 Die Sattel-Knoten-Bifurkation.- 4.4 Die transkritische Verzweigung.- 4.5 Die Pitchfork-Bifurkation.- 4.6 Die Hopf-Bifurkation.- 4.7 Methode der Projektionen.- 4.8 Stabilität periodischer Lösungen.- Anhang A (Fredholm-Alternative).- Anhang B (Hopf-Bifurkationen in kontinuierlichen Systemen).- Aufgaben.- 5 Asymptotische Methoden.- 5.1 Die Mittelwert-Methode.- 5.2 Beispiele.- 5.3 Schwach nichtlineare Oszillatoren.- 5.4 Die Viel variablen-Methode.- Aufgaben.- 6 Homokline Bifurkationen.- 6.1 Die Standardabbildung.- 6.2 Sattelpunkte flächenerhaltender Abbildungen.- 6.3 Elliptische Fixpunkte flächenerhaltender Abbildungen und KAM-Kurven.- 6.4 Winkel- und Wirkungsvariable.- 6.5 Schwach gestörte Hamilton-Systeme.- 6.6 Das Melnikov-Kriterium.- 6.7 Verallgemeinerungen des Melnikov-Kriteriums.- 6.8 Das Shilnikov-Phänomen.- Aufgaben.- 7 Bifurkationen mit höherer Ko-Dimension.- 7.1 Verallgemeinerung der Grundtypen von Bifurkationen eindimensionaler Systeme.- 7.2 Die Ko-Dimension dynamischer Systeme.- 7.3 Dynamik von Bifurkationen mit Ko-Dimension Zwei.- Anhang A Versale Entfaltung von Matrizen.- Aufgaben.- Quantitative Methoden derBeschreibung nichtlinearer und chaotischer Systeme.- 8.1 Der (Phasen-)Fluß autonomer Vektorfelder.- 8.2 Nicht-autonome dynamische Systeme.- 8.3 Zur Begriffsbildung bei chaotischen Systemen.- 8.4 Der Lyapunov-Exponent.- 8.5 Die Autokorrelationsfunktion.- 8.6 Das Leistungsspektrum.- 8.7 Fraktale Strukturen und Dimensionen.- 8.8 Rekonstruktion eines Attraktors aus einer Zeitreihe.- Aufgaben.- Literatur.- Sachwortverzeichnis.
Details
Erscheinungsjahr: 1995
Fachbereich: Analysis
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: viii
232 S.
5 s/w Illustr.
232 S. 5 Abb.
ISBN-13: 9783528065607
ISBN-10: 3528065605
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Brod, Klaus
Plaschko, Peter
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 244 x 170 x 14 mm
Von/Mit: Klaus Brod (u. a.)
Erscheinungsdatum: 01.01.1995
Gewicht: 0,429 kg
Artikel-ID: 102163461
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte