Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
37,44 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
This textbook presents the theory of Metric Spaces necessary for studying analysis beyond one real variable. Rich in examples, exercises and motivation, it provides a careful and clear exposition at a pace appropriate to the material.
The book covers the main topics of metric space theory that the student of analysis is likely to need. Starting with an overview defining the principal examples of metric spaces in analysis (chapter 1), it turns to the basic theory (chapter 2) covering open and closed sets, convergence, completeness and continuity (including a treatment of continuous linear mappings). There is also a brief dive into general topology, showing how metric spaces fit into a wider theory. The following chapter is devoted to proving the completeness of the classical spaces. The text then embarks on a study of spaces with important special properties. Compact spaces, separable spaces, complete spaces and connected spaces each have a chapter devoted to them. A particular feature of the book is the occasional excursion into analysis. Examples include the Mazur¿Ulam theorem, Picard¿s theorem on existence of solutions to ordinary differential equations, and space filling curves.
This text will be useful to all undergraduate students of mathematics, especially those who require metric space concepts for topics such as multivariate analysis, differential equations, complex analysis, functional analysis, and topology. It includes a large number of exercises, varying from routine to challenging. The prerequisites are a first course in real analysis of one real variable, an acquaintance with set theory, and some experience with rigorous proofs.
This textbook presents the theory of Metric Spaces necessary for studying analysis beyond one real variable. Rich in examples, exercises and motivation, it provides a careful and clear exposition at a pace appropriate to the material.
The book covers the main topics of metric space theory that the student of analysis is likely to need. Starting with an overview defining the principal examples of metric spaces in analysis (chapter 1), it turns to the basic theory (chapter 2) covering open and closed sets, convergence, completeness and continuity (including a treatment of continuous linear mappings). There is also a brief dive into general topology, showing how metric spaces fit into a wider theory. The following chapter is devoted to proving the completeness of the classical spaces. The text then embarks on a study of spaces with important special properties. Compact spaces, separable spaces, complete spaces and connected spaces each have a chapter devoted to them. A particular feature of the book is the occasional excursion into analysis. Examples include the Mazur¿Ulam theorem, Picard¿s theorem on existence of solutions to ordinary differential equations, and space filling curves.
This text will be useful to all undergraduate students of mathematics, especially those who require metric space concepts for topics such as multivariate analysis, differential equations, complex analysis, functional analysis, and topology. It includes a large number of exercises, varying from routine to challenging. The prerequisites are a first course in real analysis of one real variable, an acquaintance with set theory, and some experience with rigorous proofs.
Über den Autor
Robert Magnus was born in the UK and studied mathematics at the Universities of Cambridge and Sussex. He has taught nearly all subjects associated with analysis and has published papers in the areas of bifurcation theory, catastrophe theory, analytic operator functions and nonlinear partial differential equations. Since 1977 he has lived and worked in Iceland.
Zusammenfassung
Provides a lucid and clear exposition which includes additional motivation and explanation for delicate points
Presents metric spaces as a tool for advanced analysis, topology and related subjects
Includes many exercises with hints
Inhaltsverzeichnis
- 1. Metric Spaces. - 2. Basic Theory of Metric Spaces. - 3. Completeness of the Classical Spaces. - 4. Compact Spaces. - 5. Separable Spaces. - 6. Properties of Complete Spaces. - 7. Connected Spaces. - Afterword.
Details
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Springer Undergraduate Mathematics Series |
Inhalt: |
xix
244 S. 10 s/w Illustr. 1 farbige Illustr. 244 p. 11 illus. 1 illus. in color. |
ISBN-13: | 9783030949457 |
ISBN-10: | 3030949451 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Magnus, Robert |
Auflage: | 1st ed. 2022 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Undergraduate Mathematics Series |
Maße: | 235 x 155 x 15 mm |
Von/Mit: | Robert Magnus |
Erscheinungsdatum: | 17.03.2022 |
Gewicht: | 0,406 kg |
Über den Autor
Robert Magnus was born in the UK and studied mathematics at the Universities of Cambridge and Sussex. He has taught nearly all subjects associated with analysis and has published papers in the areas of bifurcation theory, catastrophe theory, analytic operator functions and nonlinear partial differential equations. Since 1977 he has lived and worked in Iceland.
Zusammenfassung
Provides a lucid and clear exposition which includes additional motivation and explanation for delicate points
Presents metric spaces as a tool for advanced analysis, topology and related subjects
Includes many exercises with hints
Inhaltsverzeichnis
- 1. Metric Spaces. - 2. Basic Theory of Metric Spaces. - 3. Completeness of the Classical Spaces. - 4. Compact Spaces. - 5. Separable Spaces. - 6. Properties of Complete Spaces. - 7. Connected Spaces. - Afterword.
Details
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Springer Undergraduate Mathematics Series |
Inhalt: |
xix
244 S. 10 s/w Illustr. 1 farbige Illustr. 244 p. 11 illus. 1 illus. in color. |
ISBN-13: | 9783030949457 |
ISBN-10: | 3030949451 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Magnus, Robert |
Auflage: | 1st ed. 2022 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG Springer Undergraduate Mathematics Series |
Maße: | 235 x 155 x 15 mm |
Von/Mit: | Robert Magnus |
Erscheinungsdatum: | 17.03.2022 |
Gewicht: | 0,406 kg |
Warnhinweis