Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Mathematik für Chemiker
Methoden, Beispiele, Anwendungen und Aufgaben
Taschenbuch von Ernst-Albrecht Reinsch
Sprache: Deutsch

44,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
Wie kann man chemische Probleme mathematisch beschreiben und lösen? In Theorie, Anwendung und Beispiel zeigt dieses Buch dem Studierenden die erforderlichen mathematischen Methoden praxisbezogen und verständlich. Viele Übungsaufgaben machen fit für Prüfung und Praxis.
Wie kann man chemische Probleme mathematisch beschreiben und lösen? In Theorie, Anwendung und Beispiel zeigt dieses Buch dem Studierenden die erforderlichen mathematischen Methoden praxisbezogen und verständlich. Viele Übungsaufgaben machen fit für Prüfung und Praxis.
Über den Autor
Prof. Dr. Ernst-Albrecht Reinsch, Universität Frankfurt
Zusammenfassung
Wie kann man chemische Probleme mathematisch beschreiben und lösen? In Theorie, Anwendung und Beispiel zeigt dieses Buch Studierenden die erforderlichen mathematischen Methoden praxisbezogen und verständlich. Viele Übungsaufgaben machen fit für Prüfung und Praxis.
Inhaltsverzeichnis
1 Zahlen.- 1.1 Grundbegriffe der Mengenlehre.- 1.2 Reelle Zahlen.- 1.3 Komplexe Zahlen.- 1.4 Polynome und ihre Nullstellen.- 1.5 Kombinatorik.- 2 Vektorrechnung.- 2.1 Vektoren.- 2.2 Produkte von Vektoren.- 2.3 Lineare Abhängigkeit und Basistransformation.- 2.4 Matrizen.- 2.5 Determinanten.- 2.6 Lineare Gleichungssysteme.- 2.7 Eigenwertprobleme.- 2.8 Tensoren und eine Schlußbemerkung.- 3 Analytische Geometrie.- 3.1 Die analytische Darstellung geometrischer Gebilde.- 3.2 Abbildungen von Punktmengen, Koordinatentransformationen.- 4 Funktionen, Folgen und Reihen.- 4.1 Allgemeines über Funktionen.- 4.2 Einige wichtige Funktionen mit einer oder zwei Veränderlichen.- 4.3 Grenzwerte.- 5 Differentialrechnung.- 5.1 Die Ableitung von Funktionen mit einer Variablen.- 5.2 Singuläre Stellen; Nullstellen; Extrema.- 5.3 Funktionen mit mehreren Variablen.- 5.4 Partielle Ableitungen als Komponenten eines Vektors.- 6 Integralrechnung.- 6.1 Bestimmte und unbestimmte Integrale.- 6.2 Integrationsregeln.- 6.3 Ergänzungen.- 6.4 Kurvenintegrale.- 6.5 Bereichsintegrale.- 7 Taylorsche Reihen und Analytische Funktionen.- 7.1 Taylorsche Reihen.- 7.2 Analytische Funktionen.- 8 Entwicklung nach Funktionensystemen; Fouriertransformation.- 8.1 Funktionen als Vektoren in unendlich dimensionalen Räumen.- 8.2 Fourieranalyse.- 8.3 Fouriertransformation.- 8.4 Lineare Operatoren in Funktionenräumen.- 8.5 Wellenmechanik.- 9 Differentialgleichungen.- 9.1 Einführung.- 9.2 Differentialgleichungen erster Ordnung.- 9.3 Systeme von Differentialgleichungen erster Ordnung.- 9.4 Lineare Differentialgleichungen zweiter Ordnung.- 9.5 Partielle Differentialgleichungen.- 10 Gruppentheorie.- 10.1 Gruppen.- 10.2 Darstellungstheorie.- 11 Versuchsauswertung und Fehlerrechnung.- 11.1 Wahrscheinlichkeitsdichten.- 11.2Meßreihen.- 11.3 Fehlerfortpflanzung.- 11.4 Ausgleichsfunktionen.- 11.5 Computer-Programme.- A Grundwissen.- A.1 Algebra.- A.2 Trigonometrie.- B Lösungen der Übungsaufgaben.
Details
Erscheinungsjahr: 2004
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Taschenbuch
Inhalt: 536 S.
6 s/w Illustr.
536 S. 6 Abb.
ISBN-13: 9783519004431
ISBN-10: 3519004437
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Reinsch, Ernst-Albrecht
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 240 x 170 x 29 mm
Von/Mit: Ernst-Albrecht Reinsch
Erscheinungsdatum: 29.01.2004
Gewicht: 0,906 kg
Artikel-ID: 102557103
Über den Autor
Prof. Dr. Ernst-Albrecht Reinsch, Universität Frankfurt
Zusammenfassung
Wie kann man chemische Probleme mathematisch beschreiben und lösen? In Theorie, Anwendung und Beispiel zeigt dieses Buch Studierenden die erforderlichen mathematischen Methoden praxisbezogen und verständlich. Viele Übungsaufgaben machen fit für Prüfung und Praxis.
Inhaltsverzeichnis
1 Zahlen.- 1.1 Grundbegriffe der Mengenlehre.- 1.2 Reelle Zahlen.- 1.3 Komplexe Zahlen.- 1.4 Polynome und ihre Nullstellen.- 1.5 Kombinatorik.- 2 Vektorrechnung.- 2.1 Vektoren.- 2.2 Produkte von Vektoren.- 2.3 Lineare Abhängigkeit und Basistransformation.- 2.4 Matrizen.- 2.5 Determinanten.- 2.6 Lineare Gleichungssysteme.- 2.7 Eigenwertprobleme.- 2.8 Tensoren und eine Schlußbemerkung.- 3 Analytische Geometrie.- 3.1 Die analytische Darstellung geometrischer Gebilde.- 3.2 Abbildungen von Punktmengen, Koordinatentransformationen.- 4 Funktionen, Folgen und Reihen.- 4.1 Allgemeines über Funktionen.- 4.2 Einige wichtige Funktionen mit einer oder zwei Veränderlichen.- 4.3 Grenzwerte.- 5 Differentialrechnung.- 5.1 Die Ableitung von Funktionen mit einer Variablen.- 5.2 Singuläre Stellen; Nullstellen; Extrema.- 5.3 Funktionen mit mehreren Variablen.- 5.4 Partielle Ableitungen als Komponenten eines Vektors.- 6 Integralrechnung.- 6.1 Bestimmte und unbestimmte Integrale.- 6.2 Integrationsregeln.- 6.3 Ergänzungen.- 6.4 Kurvenintegrale.- 6.5 Bereichsintegrale.- 7 Taylorsche Reihen und Analytische Funktionen.- 7.1 Taylorsche Reihen.- 7.2 Analytische Funktionen.- 8 Entwicklung nach Funktionensystemen; Fouriertransformation.- 8.1 Funktionen als Vektoren in unendlich dimensionalen Räumen.- 8.2 Fourieranalyse.- 8.3 Fouriertransformation.- 8.4 Lineare Operatoren in Funktionenräumen.- 8.5 Wellenmechanik.- 9 Differentialgleichungen.- 9.1 Einführung.- 9.2 Differentialgleichungen erster Ordnung.- 9.3 Systeme von Differentialgleichungen erster Ordnung.- 9.4 Lineare Differentialgleichungen zweiter Ordnung.- 9.5 Partielle Differentialgleichungen.- 10 Gruppentheorie.- 10.1 Gruppen.- 10.2 Darstellungstheorie.- 11 Versuchsauswertung und Fehlerrechnung.- 11.1 Wahrscheinlichkeitsdichten.- 11.2Meßreihen.- 11.3 Fehlerfortpflanzung.- 11.4 Ausgleichsfunktionen.- 11.5 Computer-Programme.- A Grundwissen.- A.1 Algebra.- A.2 Trigonometrie.- B Lösungen der Übungsaufgaben.
Details
Erscheinungsjahr: 2004
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Taschenbuch
Inhalt: 536 S.
6 s/w Illustr.
536 S. 6 Abb.
ISBN-13: 9783519004431
ISBN-10: 3519004437
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Reinsch, Ernst-Albrecht
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 240 x 170 x 29 mm
Von/Mit: Ernst-Albrecht Reinsch
Erscheinungsdatum: 29.01.2004
Gewicht: 0,906 kg
Artikel-ID: 102557103
Sicherheitshinweis