Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
44,99 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Kategorien:
Beschreibung
Wie kann man chemische Probleme mathematisch beschreiben und lösen? In Theorie, Anwendung und Beispiel zeigt dieses Buch dem Studierenden die erforderlichen mathematischen Methoden praxisbezogen und verständlich. Viele Übungsaufgaben machen fit für Prüfung und Praxis.
Wie kann man chemische Probleme mathematisch beschreiben und lösen? In Theorie, Anwendung und Beispiel zeigt dieses Buch dem Studierenden die erforderlichen mathematischen Methoden praxisbezogen und verständlich. Viele Übungsaufgaben machen fit für Prüfung und Praxis.
Über den Autor
Prof. Dr. Ernst-Albrecht Reinsch, Universität Frankfurt
Zusammenfassung
Wie kann man chemische Probleme mathematisch beschreiben und lösen? In Theorie, Anwendung und Beispiel zeigt dieses Buch Studierenden die erforderlichen mathematischen Methoden praxisbezogen und verständlich. Viele Übungsaufgaben machen fit für Prüfung und Praxis.
Inhaltsverzeichnis
1 Zahlen.- 1.1 Grundbegriffe der Mengenlehre.- 1.2 Reelle Zahlen.- 1.3 Komplexe Zahlen.- 1.4 Polynome und ihre Nullstellen.- 1.5 Kombinatorik.- 2 Vektorrechnung.- 2.1 Vektoren.- 2.2 Produkte von Vektoren.- 2.3 Lineare Abhängigkeit und Basistransformation.- 2.4 Matrizen.- 2.5 Determinanten.- 2.6 Lineare Gleichungssysteme.- 2.7 Eigenwertprobleme.- 2.8 Tensoren und eine Schlußbemerkung.- 3 Analytische Geometrie.- 3.1 Die analytische Darstellung geometrischer Gebilde.- 3.2 Abbildungen von Punktmengen, Koordinatentransformationen.- 4 Funktionen, Folgen und Reihen.- 4.1 Allgemeines über Funktionen.- 4.2 Einige wichtige Funktionen mit einer oder zwei Veränderlichen.- 4.3 Grenzwerte.- 5 Differentialrechnung.- 5.1 Die Ableitung von Funktionen mit einer Variablen.- 5.2 Singuläre Stellen; Nullstellen; Extrema.- 5.3 Funktionen mit mehreren Variablen.- 5.4 Partielle Ableitungen als Komponenten eines Vektors.- 6 Integralrechnung.- 6.1 Bestimmte und unbestimmte Integrale.- 6.2 Integrationsregeln.- 6.3 Ergänzungen.- 6.4 Kurvenintegrale.- 6.5 Bereichsintegrale.- 7 Taylorsche Reihen und Analytische Funktionen.- 7.1 Taylorsche Reihen.- 7.2 Analytische Funktionen.- 8 Entwicklung nach Funktionensystemen; Fouriertransformation.- 8.1 Funktionen als Vektoren in unendlich dimensionalen Räumen.- 8.2 Fourieranalyse.- 8.3 Fouriertransformation.- 8.4 Lineare Operatoren in Funktionenräumen.- 8.5 Wellenmechanik.- 9 Differentialgleichungen.- 9.1 Einführung.- 9.2 Differentialgleichungen erster Ordnung.- 9.3 Systeme von Differentialgleichungen erster Ordnung.- 9.4 Lineare Differentialgleichungen zweiter Ordnung.- 9.5 Partielle Differentialgleichungen.- 10 Gruppentheorie.- 10.1 Gruppen.- 10.2 Darstellungstheorie.- 11 Versuchsauswertung und Fehlerrechnung.- 11.1 Wahrscheinlichkeitsdichten.- 11.2Meßreihen.- 11.3 Fehlerfortpflanzung.- 11.4 Ausgleichsfunktionen.- 11.5 Computer-Programme.- A Grundwissen.- A.1 Algebra.- A.2 Trigonometrie.- B Lösungen der Übungsaufgaben.
Details
Erscheinungsjahr: | 2004 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Thema: | Lexika |
Medium: | Taschenbuch |
Inhalt: |
536 S.
6 s/w Illustr. 536 S. 6 Abb. |
ISBN-13: | 9783519004431 |
ISBN-10: | 3519004437 |
Sprache: | Deutsch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Reinsch, Ernst-Albrecht |
Hersteller: |
Vieweg & Teubner
Vieweg+Teubner Verlag |
Verantwortliche Person für die EU: | Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com |
Maße: | 240 x 170 x 29 mm |
Von/Mit: | Ernst-Albrecht Reinsch |
Erscheinungsdatum: | 29.01.2004 |
Gewicht: | 0,906 kg |
Über den Autor
Prof. Dr. Ernst-Albrecht Reinsch, Universität Frankfurt
Zusammenfassung
Wie kann man chemische Probleme mathematisch beschreiben und lösen? In Theorie, Anwendung und Beispiel zeigt dieses Buch Studierenden die erforderlichen mathematischen Methoden praxisbezogen und verständlich. Viele Übungsaufgaben machen fit für Prüfung und Praxis.
Inhaltsverzeichnis
1 Zahlen.- 1.1 Grundbegriffe der Mengenlehre.- 1.2 Reelle Zahlen.- 1.3 Komplexe Zahlen.- 1.4 Polynome und ihre Nullstellen.- 1.5 Kombinatorik.- 2 Vektorrechnung.- 2.1 Vektoren.- 2.2 Produkte von Vektoren.- 2.3 Lineare Abhängigkeit und Basistransformation.- 2.4 Matrizen.- 2.5 Determinanten.- 2.6 Lineare Gleichungssysteme.- 2.7 Eigenwertprobleme.- 2.8 Tensoren und eine Schlußbemerkung.- 3 Analytische Geometrie.- 3.1 Die analytische Darstellung geometrischer Gebilde.- 3.2 Abbildungen von Punktmengen, Koordinatentransformationen.- 4 Funktionen, Folgen und Reihen.- 4.1 Allgemeines über Funktionen.- 4.2 Einige wichtige Funktionen mit einer oder zwei Veränderlichen.- 4.3 Grenzwerte.- 5 Differentialrechnung.- 5.1 Die Ableitung von Funktionen mit einer Variablen.- 5.2 Singuläre Stellen; Nullstellen; Extrema.- 5.3 Funktionen mit mehreren Variablen.- 5.4 Partielle Ableitungen als Komponenten eines Vektors.- 6 Integralrechnung.- 6.1 Bestimmte und unbestimmte Integrale.- 6.2 Integrationsregeln.- 6.3 Ergänzungen.- 6.4 Kurvenintegrale.- 6.5 Bereichsintegrale.- 7 Taylorsche Reihen und Analytische Funktionen.- 7.1 Taylorsche Reihen.- 7.2 Analytische Funktionen.- 8 Entwicklung nach Funktionensystemen; Fouriertransformation.- 8.1 Funktionen als Vektoren in unendlich dimensionalen Räumen.- 8.2 Fourieranalyse.- 8.3 Fouriertransformation.- 8.4 Lineare Operatoren in Funktionenräumen.- 8.5 Wellenmechanik.- 9 Differentialgleichungen.- 9.1 Einführung.- 9.2 Differentialgleichungen erster Ordnung.- 9.3 Systeme von Differentialgleichungen erster Ordnung.- 9.4 Lineare Differentialgleichungen zweiter Ordnung.- 9.5 Partielle Differentialgleichungen.- 10 Gruppentheorie.- 10.1 Gruppen.- 10.2 Darstellungstheorie.- 11 Versuchsauswertung und Fehlerrechnung.- 11.1 Wahrscheinlichkeitsdichten.- 11.2Meßreihen.- 11.3 Fehlerfortpflanzung.- 11.4 Ausgleichsfunktionen.- 11.5 Computer-Programme.- A Grundwissen.- A.1 Algebra.- A.2 Trigonometrie.- B Lösungen der Übungsaufgaben.
Details
Erscheinungsjahr: | 2004 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Thema: | Lexika |
Medium: | Taschenbuch |
Inhalt: |
536 S.
6 s/w Illustr. 536 S. 6 Abb. |
ISBN-13: | 9783519004431 |
ISBN-10: | 3519004437 |
Sprache: | Deutsch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Reinsch, Ernst-Albrecht |
Hersteller: |
Vieweg & Teubner
Vieweg+Teubner Verlag |
Verantwortliche Person für die EU: | Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com |
Maße: | 240 x 170 x 29 mm |
Von/Mit: | Ernst-Albrecht Reinsch |
Erscheinungsdatum: | 29.01.2004 |
Gewicht: | 0,906 kg |
Sicherheitshinweis