117,69 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Haoxing Ren (Mark) was born in Nanchang, China in 1976. He received two BS degrees in Electrical Engineering and Finance, and MS degree in Electrical Engineering from Shanghai Jiao Tong University, China in 1996, and 1999, respectively; MS in Computer Engineering from Rensselaer Polytechnic Institute in 2000; and PhD in Computer Engineering from University of Texas at Austin in 2006. From 2000 to 2015, he worked at IBM Microelectronics and Thomas J. Watson Research Center (after 2006) developing physical design and logic synthesis tools and methodology for IBM microprocessor and ASIC designs. He received several IBM technical achievement awards including the IBM Corporate Award for his work on improving microprocessor design productivity. After his 15 years tenue at IBM, he had a brief stint as a technical executive at a chip design start-up developing server-class CPUs based on IBM OpenPOWER technology. In 2016, Mark joined NVIDIA Research where he currently leads theDesign Automation research group, whose mission is to improve the quality and productivity of chip design through machine learning and GPU accelerated tools. He published many papers in the field of design automation including several book chapters in logic synthesis and physical design. He also received the best paper awards at International Symposium on Physical Design (ISPD) in 2013, Design Automation Conference (DAC) in 2019 and IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems in 2021.
Jiang Hu received the B.S. degree in optical engineering from Zhejiang University (China) in 1990, the M.S. degree in physics in 1997 and the Ph.D. degree in electrical engineering from the University of Minnesota in 2001. He worked with IBM Microelectronics from January 2001 to June 2002.In 2002 he joined the electrical engineering faculty at Texas A&M University. His research interests include design automation of VLSI circuits and systems, computer architecture, hardware security and machine learning applications. Honors include receiving a best paper award at the ACM/IEEE Design Automation Conference in 2001, an IBM Invention Achievement Award in 2003, a best paper award at the IEEE/ACM International Conference on Computer-Aided Design in 2011, a best paper award at the IEEE International Conference on Vehicular Electronics and Safety in 2018 and a best paper award at the IEEE/ACM International Symposium on Microarchitecture in 2021. He has served as technical program committee members for DAC, ICCAD, ISPD, ISQED, ICCD, DATE, ISCAS, ASP-DAC and ISLPED. He is the general chair for the 2012 ACM International Symposium on Physical Design. He served as an associate editor for IEEE Transactions on CAD and the ACM Transactions on Design Automation of Electronic Systems. He received the Humboldt Research Fellowship in 2012. He was named an IEEE Fellow in 2016.
Serves as a single-source reference to key machine learning (ML) applications and methods in digital
Covers classical ML methods, as well as deep learning models such as convolutional neural networks (CNNs)
Discusses machine learning ML's applications in electronic design automation (EDA), especially in the design
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
xii
583 S. 4 s/w Illustr. 211 farbige Illustr. 583 p. 215 illus. 211 illus. in color. |
ISBN-13: | 9783031130731 |
ISBN-10: | 3031130731 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Hu, Jiang
Ren, Haoxing |
Herausgeber: | Haoxing Ren/Jiang Hu |
Auflage: | 1st ed. 2022 |
Hersteller: | Springer International Publishing |
Maße: | 241 x 160 x 38 mm |
Von/Mit: | Jiang Hu (u. a.) |
Erscheinungsdatum: | 02.01.2023 |
Gewicht: | 1,051 kg |
Haoxing Ren (Mark) was born in Nanchang, China in 1976. He received two BS degrees in Electrical Engineering and Finance, and MS degree in Electrical Engineering from Shanghai Jiao Tong University, China in 1996, and 1999, respectively; MS in Computer Engineering from Rensselaer Polytechnic Institute in 2000; and PhD in Computer Engineering from University of Texas at Austin in 2006. From 2000 to 2015, he worked at IBM Microelectronics and Thomas J. Watson Research Center (after 2006) developing physical design and logic synthesis tools and methodology for IBM microprocessor and ASIC designs. He received several IBM technical achievement awards including the IBM Corporate Award for his work on improving microprocessor design productivity. After his 15 years tenue at IBM, he had a brief stint as a technical executive at a chip design start-up developing server-class CPUs based on IBM OpenPOWER technology. In 2016, Mark joined NVIDIA Research where he currently leads theDesign Automation research group, whose mission is to improve the quality and productivity of chip design through machine learning and GPU accelerated tools. He published many papers in the field of design automation including several book chapters in logic synthesis and physical design. He also received the best paper awards at International Symposium on Physical Design (ISPD) in 2013, Design Automation Conference (DAC) in 2019 and IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems in 2021.
Jiang Hu received the B.S. degree in optical engineering from Zhejiang University (China) in 1990, the M.S. degree in physics in 1997 and the Ph.D. degree in electrical engineering from the University of Minnesota in 2001. He worked with IBM Microelectronics from January 2001 to June 2002.In 2002 he joined the electrical engineering faculty at Texas A&M University. His research interests include design automation of VLSI circuits and systems, computer architecture, hardware security and machine learning applications. Honors include receiving a best paper award at the ACM/IEEE Design Automation Conference in 2001, an IBM Invention Achievement Award in 2003, a best paper award at the IEEE/ACM International Conference on Computer-Aided Design in 2011, a best paper award at the IEEE International Conference on Vehicular Electronics and Safety in 2018 and a best paper award at the IEEE/ACM International Symposium on Microarchitecture in 2021. He has served as technical program committee members for DAC, ICCAD, ISPD, ISQED, ICCD, DATE, ISCAS, ASP-DAC and ISLPED. He is the general chair for the 2012 ACM International Symposium on Physical Design. He served as an associate editor for IEEE Transactions on CAD and the ACM Transactions on Design Automation of Electronic Systems. He received the Humboldt Research Fellowship in 2012. He was named an IEEE Fellow in 2016.
Serves as a single-source reference to key machine learning (ML) applications and methods in digital
Covers classical ML methods, as well as deep learning models such as convolutional neural networks (CNNs)
Discusses machine learning ML's applications in electronic design automation (EDA), especially in the design
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: |
xii
583 S. 4 s/w Illustr. 211 farbige Illustr. 583 p. 215 illus. 211 illus. in color. |
ISBN-13: | 9783031130731 |
ISBN-10: | 3031130731 |
Sprache: | Englisch |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Hu, Jiang
Ren, Haoxing |
Herausgeber: | Haoxing Ren/Jiang Hu |
Auflage: | 1st ed. 2022 |
Hersteller: | Springer International Publishing |
Maße: | 241 x 160 x 38 mm |
Von/Mit: | Jiang Hu (u. a.) |
Erscheinungsdatum: | 02.01.2023 |
Gewicht: | 1,051 kg |