Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Lineare Algebra und Analytische Geometrie III
Geometrie im euklidischen Raum. Mit historischen Anmerkungen von Erhard Scholz
Buch von Egbert Brieskorn
Sprache: Deutsch

49,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung
Dieser Band ist der dritte Teil des Lehrbuches von Egbert Brieskorn zur Linearen Algebra und analytischen Geometrie und legt den Schwerpunkt auf die Geometrie im euklidischen Raum. Er beginnt mit einem sorgfältigen Studium der Isometriegruppen euklidischer affiner Räume und ihrer Ähnlichkeitsabbildungen, führt über die Länge rektifizierbarer Kurven den Winkelbegriff der euklidischen Geometrie ein und entwickelt die Grundkonzepte der ebenen und sphärischen Trigonometrie. Daran schließt der Autor eine sorgfältige Diskussion der Isometriegruppen und der konformen Abbildungen der Sphären an und streicht die resultierende Sonderstellung der Sphären unter den kompakten Riemannschen Mannigfaltigkeiten heraus. Anschließend an eine Bemerkung Hermann Weyls über die tief liegende Rolle des Spins für die euklidische Geometrie macht der Autor einen längeren Ausflug in die Spindarstellung der euklidischen Rotationsgruppe sowie der Lorentzgruppe. Der Band wird durch eine detaillierte Klassifikation der euklidischen Isometrien und eine Klassifikation der affinen Quadriken mit Blick auf das klassische Studium der Kegelschnitte abgerundet. Im Anhang des Buches befinden sich Anmerkungen zur Geschichte der Euklidischen Geometrie von Erhard Scholz.
Dieser Band ist der dritte Teil des Lehrbuches von Egbert Brieskorn zur Linearen Algebra und analytischen Geometrie und legt den Schwerpunkt auf die Geometrie im euklidischen Raum. Er beginnt mit einem sorgfältigen Studium der Isometriegruppen euklidischer affiner Räume und ihrer Ähnlichkeitsabbildungen, führt über die Länge rektifizierbarer Kurven den Winkelbegriff der euklidischen Geometrie ein und entwickelt die Grundkonzepte der ebenen und sphärischen Trigonometrie. Daran schließt der Autor eine sorgfältige Diskussion der Isometriegruppen und der konformen Abbildungen der Sphären an und streicht die resultierende Sonderstellung der Sphären unter den kompakten Riemannschen Mannigfaltigkeiten heraus. Anschließend an eine Bemerkung Hermann Weyls über die tief liegende Rolle des Spins für die euklidische Geometrie macht der Autor einen längeren Ausflug in die Spindarstellung der euklidischen Rotationsgruppe sowie der Lorentzgruppe. Der Band wird durch eine detaillierte Klassifikation der euklidischen Isometrien und eine Klassifikation der affinen Quadriken mit Blick auf das klassische Studium der Kegelschnitte abgerundet. Im Anhang des Buches befinden sich Anmerkungen zur Geschichte der Euklidischen Geometrie von Erhard Scholz.
Über den Autor
Prof. Dr. Egbert Brieskorn war viele Jahre Professor für Mathematik an der Universität Bonn.
Zusammenfassung

Dritter Teil der Linearen Algebra von Egbert Brieskorn mit Schwerpunkt Geometrie im euklidischen Raum

Die Bände vermitteln einen tiefen, theoretischen Einblick in das weite Feld der linearen Algebra und ihrer Grenzgebiete

Historische Anmerkungen von Erhard Scholz auch in diesem dritten Band

Inhaltsverzeichnis
Geleitwort.- Vorwort.- Vorbemerkungen.- Kapitel 1: Euklidische affine Räume und ihre Isometriegruppen.- Kapitel 2: Die Länge von Kurven.- Kapitel 3: Winkel.- Kapitel 4: Spiegelungen und Drehungen.- Kapitel 5: Die Klassifikation der Isometrien.- Kapitel 6: Kegelschnitte.- Anhang: Anmerkungen zur Geschichte der Euklidischen Geometrie von Erhard Scholz.
Details
Erscheinungsjahr: 2019
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: XI
434 S.
1 s/w Illustr.
434 S. 1 Abb.
ISBN-13: 9783658251932
ISBN-10: 365825193X
Sprache: Deutsch
Herstellernummer: 978-3-658-25193-2
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Brieskorn, Egbert
Auflage: 1. Aufl. 2019
Hersteller: Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden GmbH
Verantwortliche Person für die EU: Springer Spektrum in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 246 x 173 x 30 mm
Von/Mit: Egbert Brieskorn
Erscheinungsdatum: 26.04.2019
Gewicht: 0,923 kg
Artikel-ID: 115113384
Über den Autor
Prof. Dr. Egbert Brieskorn war viele Jahre Professor für Mathematik an der Universität Bonn.
Zusammenfassung

Dritter Teil der Linearen Algebra von Egbert Brieskorn mit Schwerpunkt Geometrie im euklidischen Raum

Die Bände vermitteln einen tiefen, theoretischen Einblick in das weite Feld der linearen Algebra und ihrer Grenzgebiete

Historische Anmerkungen von Erhard Scholz auch in diesem dritten Band

Inhaltsverzeichnis
Geleitwort.- Vorwort.- Vorbemerkungen.- Kapitel 1: Euklidische affine Räume und ihre Isometriegruppen.- Kapitel 2: Die Länge von Kurven.- Kapitel 3: Winkel.- Kapitel 4: Spiegelungen und Drehungen.- Kapitel 5: Die Klassifikation der Isometrien.- Kapitel 6: Kegelschnitte.- Anhang: Anmerkungen zur Geschichte der Euklidischen Geometrie von Erhard Scholz.
Details
Erscheinungsjahr: 2019
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: XI
434 S.
1 s/w Illustr.
434 S. 1 Abb.
ISBN-13: 9783658251932
ISBN-10: 365825193X
Sprache: Deutsch
Herstellernummer: 978-3-658-25193-2
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Brieskorn, Egbert
Auflage: 1. Aufl. 2019
Hersteller: Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden GmbH
Verantwortliche Person für die EU: Springer Spektrum in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 246 x 173 x 30 mm
Von/Mit: Egbert Brieskorn
Erscheinungsdatum: 26.04.2019
Gewicht: 0,923 kg
Artikel-ID: 115113384
Sicherheitshinweis