Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Large-Scale Parallel Data Mining
Taschenbuch von Ching-Tien Ho (u. a.)
Sprache: Englisch

53,49 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Withthe unprecedented rate at which data is being collected today in almostall elds of human endeavor, there is an emerging economic and scientic need to extract useful information from it. For example, many companies already have data-warehouses inthe terabyte range (e.g., FedEx, Walmart).The WorldWide Web has an estimated 800 millionweb-pages. Similarly,scienti c data is rea- ing gigantic proportions (e.g., NASA space missions, Human Genome Project). High-performance, scalable, parallel, and distributed computing is crucial for ensuring system scalabilityand interactivityas datasets continue to grow in size and complexity. Toaddress thisneedweorganizedtheworkshoponLarge-ScaleParallelKDD Systems, which was held in conjunction with the 5th ACM SIGKDD Inter- tional Conference on Knowledge Discovery and Data Mining, on August 15th, 1999, San Diego, California. The goal of this workshop was to bring researchers and practitioners together in a setting where they could discuss the design, - plementation,anddeploymentoflarge-scaleparallelknowledgediscovery (PKD) systems, which can manipulate data taken from very large enterprise or sci- tic databases, regardless of whether the data is located centrally or is globally distributed. Relevant topics identie d for the workshop included: { How to develop a rapid-response, scalable, and parallel knowledge discovery system that supports global organizations with terabytes of data.
Withthe unprecedented rate at which data is being collected today in almostall elds of human endeavor, there is an emerging economic and scientic need to extract useful information from it. For example, many companies already have data-warehouses inthe terabyte range (e.g., FedEx, Walmart).The WorldWide Web has an estimated 800 millionweb-pages. Similarly,scienti c data is rea- ing gigantic proportions (e.g., NASA space missions, Human Genome Project). High-performance, scalable, parallel, and distributed computing is crucial for ensuring system scalabilityand interactivityas datasets continue to grow in size and complexity. Toaddress thisneedweorganizedtheworkshoponLarge-ScaleParallelKDD Systems, which was held in conjunction with the 5th ACM SIGKDD Inter- tional Conference on Knowledge Discovery and Data Mining, on August 15th, 1999, San Diego, California. The goal of this workshop was to bring researchers and practitioners together in a setting where they could discuss the design, - plementation,anddeploymentoflarge-scaleparallelknowledgediscovery (PKD) systems, which can manipulate data taken from very large enterprise or sci- tic databases, regardless of whether the data is located centrally or is globally distributed. Relevant topics identie d for the workshop included: { How to develop a rapid-response, scalable, and parallel knowledge discovery system that supports global organizations with terabytes of data.
Zusammenfassung

Includes supplementary material: [...]

Inhaltsverzeichnis
Large-Scale Parallel Data Mining.- Parallel and Distributed Data Mining: An Introduction.- Mining Frameworks.- The Integrated Delivery of Large-Scale Data Mining: The ACSys Data Mining Project.- A High Performance Implementation of the Data Space Transfer Protocol (DSTP).- Active Mining in a Distributed Setting.- Associations and Sequences.- Efficient Parallel Algorithms for Mining Associations.- Parallel Branch-and-Bound Graph Search for Correlated Association Rules.- Parallel Generalized Association Rule Mining on Large Scale PC Cluster.- Parallel Sequence Mining on Shared-Memory Machines.- Classification.- Parallel Predictor Generation.- Efficient Parallel Classification Using Dimensional Aggregates.- Learning Rules from Distributed Data.- Clustering.- Collective, Hierarchical Clustering from Distributed, Heterogeneous Data.- A Data-Clustering Algorithm on Distributed Memory Multiprocessors.
Details
Erscheinungsjahr: 2000
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Lecture Notes in Artificial Intelligence
Inhalt: viii
260 S.
ISBN-13: 9783540671947
ISBN-10: 3540671943
Sprache: Englisch
Herstellernummer: 10719635
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Zaki, Mohammed J.
Ho, Ching-Tien
Redaktion: Ho, Ching-Tien
Zaki, Mohammed J.
Herausgeber: Mohammed J Zaki/Ching-Tien Ho
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Lecture Notes in Artificial Intelligence
Maße: 235 x 155 x 15 mm
Von/Mit: Ching-Tien Ho (u. a.)
Erscheinungsdatum: 23.02.2000
Gewicht: 0,417 kg
Artikel-ID: 101886093
Zusammenfassung

Includes supplementary material: [...]

Inhaltsverzeichnis
Large-Scale Parallel Data Mining.- Parallel and Distributed Data Mining: An Introduction.- Mining Frameworks.- The Integrated Delivery of Large-Scale Data Mining: The ACSys Data Mining Project.- A High Performance Implementation of the Data Space Transfer Protocol (DSTP).- Active Mining in a Distributed Setting.- Associations and Sequences.- Efficient Parallel Algorithms for Mining Associations.- Parallel Branch-and-Bound Graph Search for Correlated Association Rules.- Parallel Generalized Association Rule Mining on Large Scale PC Cluster.- Parallel Sequence Mining on Shared-Memory Machines.- Classification.- Parallel Predictor Generation.- Efficient Parallel Classification Using Dimensional Aggregates.- Learning Rules from Distributed Data.- Clustering.- Collective, Hierarchical Clustering from Distributed, Heterogeneous Data.- A Data-Clustering Algorithm on Distributed Memory Multiprocessors.
Details
Erscheinungsjahr: 2000
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Lecture Notes in Artificial Intelligence
Inhalt: viii
260 S.
ISBN-13: 9783540671947
ISBN-10: 3540671943
Sprache: Englisch
Herstellernummer: 10719635
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Zaki, Mohammed J.
Ho, Ching-Tien
Redaktion: Ho, Ching-Tien
Zaki, Mohammed J.
Herausgeber: Mohammed J Zaki/Ching-Tien Ho
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Lecture Notes in Artificial Intelligence
Maße: 235 x 155 x 15 mm
Von/Mit: Ching-Tien Ho (u. a.)
Erscheinungsdatum: 23.02.2000
Gewicht: 0,417 kg
Artikel-ID: 101886093
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte