Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
87,70 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
This book provides a comprehensive guide to machine learning and statistics for students and researchers of environmental data science. A broad range of methods are covered together with the relevant background mathematics. End-of-chapter exercises and online data sets are included.
This book provides a comprehensive guide to machine learning and statistics for students and researchers of environmental data science. A broad range of methods are covered together with the relevant background mathematics. End-of-chapter exercises and online data sets are included.
Über den Autor
William W. Hsieh is a professor emeritus in the Department of Earth, Ocean and Atmospheric Sciences at the University of British Columbia. Known as a pioneer in introducing machine learning to environmental science, he has written over 100 peer-reviewed journal papers on climate variability, machine learning, atmospheric science, oceanography, hydrology, and agricultural science. He is the author of the book Machine Learning Methods in the Environmental Sciences ( Cambridge University Press, 2009), the first single-authored textbook on machine learning for environmental scientists. Currently retired in Victoria, British Columbia, he enjoys growing organic vegetables.
Inhaltsverzeichnis
1. Introduction; 2. Basics; 3. Probability distributions; 4. Statistical inference; 5. Linear regression; 6. Neural networks; 7. Nonlinear optimization; 8. Learning and generalization; 9. Principal components and canonical correlation; 10. Unsupervised learning; 11. Time series; 12. Classification; 13. Kernel methods; 14. Decision trees, random forests and boosting; 15. Deep learning; 16. Forecast verification and post-processing; 17. Merging of machine learning and physics; Appendices; References; Index.
Details
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Kommunikationswissenschaften |
Genre: | Medienwissenschaften |
Rubrik: | Wissenschaften |
Medium: | Buch |
Inhalt: | Gebunden |
ISBN-13: | 9781107065550 |
ISBN-10: | 1107065550 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Hsieh, William W. |
Hersteller: | Cambridge University Press |
Maße: | 248 x 175 x 35 mm |
Von/Mit: | William W. Hsieh |
Erscheinungsdatum: | 23.03.2023 |
Gewicht: | 1,328 kg |
Über den Autor
William W. Hsieh is a professor emeritus in the Department of Earth, Ocean and Atmospheric Sciences at the University of British Columbia. Known as a pioneer in introducing machine learning to environmental science, he has written over 100 peer-reviewed journal papers on climate variability, machine learning, atmospheric science, oceanography, hydrology, and agricultural science. He is the author of the book Machine Learning Methods in the Environmental Sciences ( Cambridge University Press, 2009), the first single-authored textbook on machine learning for environmental scientists. Currently retired in Victoria, British Columbia, he enjoys growing organic vegetables.
Inhaltsverzeichnis
1. Introduction; 2. Basics; 3. Probability distributions; 4. Statistical inference; 5. Linear regression; 6. Neural networks; 7. Nonlinear optimization; 8. Learning and generalization; 9. Principal components and canonical correlation; 10. Unsupervised learning; 11. Time series; 12. Classification; 13. Kernel methods; 14. Decision trees, random forests and boosting; 15. Deep learning; 16. Forecast verification and post-processing; 17. Merging of machine learning and physics; Appendices; References; Index.
Details
Erscheinungsjahr: | 2023 |
---|---|
Fachbereich: | Kommunikationswissenschaften |
Genre: | Medienwissenschaften |
Rubrik: | Wissenschaften |
Medium: | Buch |
Inhalt: | Gebunden |
ISBN-13: | 9781107065550 |
ISBN-10: | 1107065550 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Hsieh, William W. |
Hersteller: | Cambridge University Press |
Maße: | 248 x 175 x 35 mm |
Von/Mit: | William W. Hsieh |
Erscheinungsdatum: | 23.03.2023 |
Gewicht: | 1,328 kg |
Warnhinweis