139,50 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Die 2. Auflage von Innovation in Wind Turbine Design beschäftigt sich im Detail mit den Designgrundlagen, erläutert die Entscheidungsgründe für ein bestimmtes Design und beschreibt Methoden zur Bewertung innovativer Systeme und Komponenten.
Die 2. Auflage wurde wesentlich erweitert und insgesamt aktualisiert. Neue Inhalte befassen sich mit den theoretischen Grundlagen von Antriebsscheiben in Bezug auf induktionsarme Rotoren. Wesentlich erweitert wurden die Abschnitte zu Offshore-Fragen und Flugwindkraftsystemen. Aktualisierte Inhalte beziehen sich auf Antriebsstränge und die grundlegende Theorie von Planetengetrieben und Differenzialgetrieben. Die Grundlagen der Windenergie und Irrtümer hinsichtlich des Designs von Rotoren mit Luftkanälen, Labor- und Feldtests der Rotorsysteme Katru und Wind Lens werden deutlicher herausgearbeitet. LiDAR wird kurz vorgestellt, ebenso die neuesten Entwicklungen beim Multi-Rotor-Konzept, darunter das Vier-Rotor-System von Vestas. Ein neues Kapitel beschäftigt sich mit dem innovativen DeepWind VAWT.
Das Buch ist in vier Hauptabschnitte gegliedert: Hintergrundinformationen zu Designs, Technologiebewertung, Designthemen und innovative Technologiebeispiele.
Wichtige Merkmale:
- Stark erweiterte und um neue Inhalte ergänzt.
- Deckt die Designgrundlagen umfassend ab, erläutert die Entscheidungsgründe für ein bestimmtes Design und beschreibt Methoden zur Bewertung innovativer Systeme und Komponenten.
- Enthält innovative Beispiele aus der Praxis.
- Jetzt mit Informationen zu den neuesten Entwicklungen in dem Fachgebiet.
Dieses Buch ist ein Muss für Windkraftingenieure, Energieingenieure und Turbinenentwickler, Berater, Forscher und Studenten höherer Semester.
Die 2. Auflage von Innovation in Wind Turbine Design beschäftigt sich im Detail mit den Designgrundlagen, erläutert die Entscheidungsgründe für ein bestimmtes Design und beschreibt Methoden zur Bewertung innovativer Systeme und Komponenten.
Die 2. Auflage wurde wesentlich erweitert und insgesamt aktualisiert. Neue Inhalte befassen sich mit den theoretischen Grundlagen von Antriebsscheiben in Bezug auf induktionsarme Rotoren. Wesentlich erweitert wurden die Abschnitte zu Offshore-Fragen und Flugwindkraftsystemen. Aktualisierte Inhalte beziehen sich auf Antriebsstränge und die grundlegende Theorie von Planetengetrieben und Differenzialgetrieben. Die Grundlagen der Windenergie und Irrtümer hinsichtlich des Designs von Rotoren mit Luftkanälen, Labor- und Feldtests der Rotorsysteme Katru und Wind Lens werden deutlicher herausgearbeitet. LiDAR wird kurz vorgestellt, ebenso die neuesten Entwicklungen beim Multi-Rotor-Konzept, darunter das Vier-Rotor-System von Vestas. Ein neues Kapitel beschäftigt sich mit dem innovativen DeepWind VAWT.
Das Buch ist in vier Hauptabschnitte gegliedert: Hintergrundinformationen zu Designs, Technologiebewertung, Designthemen und innovative Technologiebeispiele.
Wichtige Merkmale:
- Stark erweiterte und um neue Inhalte ergänzt.
- Deckt die Designgrundlagen umfassend ab, erläutert die Entscheidungsgründe für ein bestimmtes Design und beschreibt Methoden zur Bewertung innovativer Systeme und Komponenten.
- Enthält innovative Beispiele aus der Praxis.
- Jetzt mit Informationen zu den neuesten Entwicklungen in dem Fachgebiet.
Dieses Buch ist ein Muss für Windkraftingenieure, Energieingenieure und Turbinenentwickler, Berater, Forscher und Studenten höherer Semester.
PETER JAMIESON is based at Strathclyde University for two days a week acting as a special technical advisor whilst also conducting independent research into wind energy. As a founder member of GL Garrad Hassan's Scottish office and of their Special Projects Department, he is uniquely positioned to offer the highest guidance in the future development of wind energy in the UK and beyond.
Foreword xv
Preface xvii
Acknowledgement xix
Introduction 1
0.1 Why Innovation? 1
0.2 The Challenge of Wind 2
0.3 The Specification of a Modern Wind Turbine 2
0.4 The Variability of the Wind 4
0.5 Early Electricity-Generating Wind Turbines 4
0.6 Commercial Wind Technology 6
0.7 Basis of Wind Technology Evaluation 7
0.7.1 Standard Design as Baseline 7
0.7.2 Basis of Technological Advantage 7
0.7.3 Security of Claimed Power Performance 8
0.7.4 Impact of Proposed Innovation 8
0.8 Competitive Status of Wind Technology 8
References 9
Part I Design Background 11
1 Rotor Aerodynamic Theory 13
1.1 Introduction 13
1.2 Aerodynamic Lift 14
1.3 Power in the Wind 16
1.4 The Actuator Disc Concept 17
1.5 Open Flow Actuator Disc 19
1.5.1 Power Balance 19
1.5.2 Axial Force Balance 20
1.5.3 Froude's Theorem and the Betz Limit 20
1.5.4 The Power Extraction Process 22
1.5.5 Relativity in a Fluid Flow Field 23
1.6 Why a Rotor? 25
1.7 Actuator Disc in Augmented Flow and Ducted Rotor Systems 26
1.7.1 Fundamentals 26
1.7.2 Generalised Actuator Disc 28
1.7.3 The Force on a Diffuser 36
1.7.4 Generalised Actuator Disc Theory and Realistic Diffuser Design 37
1.8 Blade Element Momentum Theory 38
1.8.1 Introduction 38
1.8.2 Momentum Equations 38
1.8.3 Blade Element Equations 40
1.8.4 Non-dimensional Lift Distribution 40
1.8.5 General Momentum Theory 41
1.8.6 BEM in Augmented Flow 42
1.8.7 Closed-Form BEM Solutions 44
1.9 Optimum Rotor Design 46
1.9.1 Optimisation to Maximise Cp 46
1.9.2 The Power Coefficient, Cp 48
1.9.3 Thrust Coefficient 51
1.9.4 Out-of-Plane Bending Moment Coefficient 52
1.9.5 Optimisation to a Loading Constraint 54
1.9.6 Optimisation of Rotor Design and Hub Flow 56
1.10 Limitations of Actuator Disc and BEM Theory 57
1.10.1 Actuator Disc Limitations 57
1.10.2 Inviscid Modelling and Real Flows 58
1.10.3 Wake Rotation and Tip Effect 58
1.10.4 Optimum Rotor Theory 59
1.10.5 Skewed Flow 59
1.10.6 Summary of BEM Limitations 59
References 60
2 Rotor Aerodynamic Design 65
2.1 Optimum Rotors and Solidity 65
2.2 Rotor Solidity and Ideal Variable Speed Operation 66
2.3 Solidity and Loads 68
2.4 Aerofoil Design Development 68
2.5 Sensitivity of Aerodynamic Performance to Planform Shape 73
2.6 Aerofoil Design Specification 74
2.7 Aerofoil Design for Large Rotors 75
References 77
3 Rotor Structural Interactions 79
3.1 Blade Design in General 79
3.2 Basics of Blade Structure 80
3.3 Simplified Cap Spar Analyses 82
3.3.1 Design for Minimum Mass with Prescribed Deflection 83
3.3.2 Design for Fatigue Strength: No Deflection Limits 83
3.4 The Effective t/c Ratio of Aerofoil Sections 84
3.5 Blade Design Studies: Example of a Parametric Analysis 85
3.6 Industrial Blade Technology 91
3.6.1 Design 91
3.6.2 Manufacturing 92
3.6.3 Design Development 94
References 94
4 Upscaling of Wind Turbine Systems 97
4.1 Introduction: Size and Size Limits 97
4.2 The 'Square-Cube' Law 100
4.3 Scaling Fundamentals 100
4.4 Similarity Rules for Wind Turbine Systems 102
4.4.1 Tip Speed 102
4.4.2 Aerodynamic Moment Scaling 103
4.4.3 Bending Section Modulus Scaling 103
4.4.4 Tension Section Scaling 103
4.4.5 Aeroelastic Stability 103
4.4.6 Self-Weight Load Scaling 103
4.4.7 Blade (Tip) Deflection Scaling 104
4.4.8 More Subtle Scaling Effects and Implications 104
4.4.8.1 Size Effect 104
4.4.8.2 Aerofoil Boundary Layer 104
4.4.8.3 Earth's Boundary Layer, Wind Shear and Turbulence 104
4.4.9 Gearbox Scaling 105
4.4.10 Support Structure Scaling 105
4.4.11 Power/Energy Scaling 105
4.4.12 Electrical Systems Scaling 106
4.4.13 Control Systems Scaling 106
4.4.14 Scaling Summary 106
4.5 Analysis of Commercial Data 107
4.5.1 Blade Mass Scaling 108
4.5.2 Shaft Mass Scaling 111
4.5.3 Scaling of Nacelle Mass and Tower Top Mass 112
4.5.4 Tower Top Mass 114
4.5.5 Tower Scaling 114
4.5.5.1 Height versus Diameter 114
4.5.5.2 Mass versus Diameter 115
4.5.5.3 Normalised Mass versus Diameter 116
4.5.6 Gearbox Scaling 118
4.6 Upscaling of VAWTs 119
4.7 Rated Tip Speed 120
4.8 Upscaling of Loads 121
4.9 Violating Similarity 123
4.10 Cost Models 124
4.11 Scaling Conclusions 125
References 126
5 Wind Energy Conversion Concepts 127
References 129
6 Drive-Train Design 131
6.1 Introduction 131
6.2 Definitions 131
6.3 Objectives of Drive-Train Innovation 132
6.4 Drive-Train Technology Maps 132
6.5 Direct Drive 136
6.6 Hybrid Systems 139
6.7 Geared Systems - the Planetary Gearbox 140
6.8 Drive Trains with Differential Drive 144
6.9 Hydraulic Transmission 145
6.10 Efficiency of Drive-Train Components 148
6.10.1 Introduction 148
6.10.2 Efficiency over the Operational Range 150
6.10.3 Gearbox Efficiency 151
6.10.4 Generator Efficiency 152
6.10.5 Converter Efficiency 153
6.10.6 Transformer Efficiency 153
6.10.7 Fluid Coupling Efficiency 153
6.11 Drive-Train Dynamics 154
6.12 The Optimum Drive Train 155
6.13 Innovative Concepts for Power Take-Off 157
References 160
7 Offshore Wind Technology 163
7.1 Design for Offshore 163
7.2 High-Speed Rotor 164
7.2.1 Design Logic 164
7.2.2 Speed Limit 164
7.2.3 Rotor Configurations 165
7.2.4 Design Comparisons 167
7.3 'Simpler' Offshore Turbines 170
7.4 Rating of Offshore Wind Turbines 171
7.5 Foundation and Support Structure Design 172
7.5.1 Foundation Design Concepts 172
7.5.2 Support Structure Design Concepts 173
7.5.3 Loads, Foundations and Costs 174
7.6 Electrical Systems of Offshore Wind Farms 175
7.6.1 Collection System for an Offshore Wind Farm 175
7.6.2 Integration of Offshore Wind Farms into Electrical Networks 177
7.6.2.1 High-Voltage Alternating Current (HVAC) 177
7.6.2.2 Current-Source Converter (CSC) 179
7.6.2.3 Voltage-Source Converter for Offshore Wind Farm Integration 180
7.7 Operations and Maintenance (O&M) 180
7.7.1 Introduction 180
7.7.2 Modelling 181
7.7.3 Inspection of Wind Turbines 182
7.8 Offshore Floating Wind Turbines 183
References 188
8 Future Wind Technology 191
8.1 Evolution 191
8.2 Present Trends - Consensus in Blade Number and Operational Concept 193
8.3 Present Trends - Divergence in Drive-Train Concepts 194
8.4 Future Wind Technology - Airborne 194
8.4.1 Introduction 194
8.4.2 KPS - Cable Tension Power Take-Off 198
8.4.2.1 Earth Axes 198
8.4.2.2 Kite Axes 198
8.4.2.3 BEM Application to the Kite as an Aerofoil Section (No Tip Loss Applied) 199
8.4.3 Daisy Kite - Rotary Power Transmission 202
8.4.4 Omnidea - Rotating Cylindrical Balloon as a Lifting Body 203
8.4.5 Makani 203
8.4.6 Airborne Conclusions 204
8.5 Future Wind Technology - Energy Storage 204
8.5.1 Types of Energy Storage 204
8.5.2 Battery Storage 204
8.5.3 Gas Pressure Storage 205
8.5.4 Compressed Air Storage 205
8.5.5 Flywheel Energy Storage 206
8.5.6 Thermal Energy Storage 206
8.6 Innovative Energy Conversion Solutions 207
8.6.1 Electrostatic Generator 207
8.6.2 Vibrating Column 208
References 208
Part II Technology Evaluation 211
9 Cost of Energy 213
9.1 The Approach to Cost of Energy 213
9.2 Energy: the Power Curve 216
9.3 Energy: Efficiency, Reliability, Availability 222
9.3.1 Efficiency 222
9.3.2 Reliability 222
9.3.3 Availability 223
9.4 Capital Costs 224
9.5 Operation and Maintenance 225
9.6 Overall Cost Split 226
9.7 Scaling Impact on Cost 227
9.8 Impact of Loads (Site Class) 228
References 232
10 Evaluation Methodology 235
10.1 Key Evaluation Issues 235
10.2 Fatal Flaw Analysis 235
10.3 Power Performance 236
10.3.1 The Betz Limit 236
10.3.2 The Pressure Difference across a Wind Turbine 237
10.3.3 Total Energy in the Flow 238
10.4 Structure and Essential Mass 239
10.5 Drive-Train Torque 241
10.6 Representative Baseline 241
10.7 Design Loads Comparison 242
10.8 Evaluation Example: Optimum Rated Power of a Wind Turbine 244
10.9 Evaluation Example: the Carter Wind Turbine and Structural Flexibility 246
10.10 Evaluation Example: Concept Design Optimisation Study 249
10.11 Evaluation Example: Ducted Turbine Design Overview 251
10.11.1 Extreme Loads 251
10.11.2 Drive-Train Torque 252
10.11.3 Energy Capture 252
References 253
Part III Design Themes 255
11 Optimum Blade Number 257
11.1 Energy Capture Comparisons 257
11.2 Blade Design Issues 258
11.3 Operational and System Design Issues 260
11.4 Multi-bladed Rotors 265
References 266
12 Pitch versus Stall 267
12.1 Stall Regulation 267
12.2 Pitch Regulation 269
12.3 Fatigue Loading...
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 416 S. |
ISBN-13: | 9781119137900 |
ISBN-10: | 111913790X |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Jamieson, Peter |
Auflage: | 2nd edition |
Hersteller: | Wiley |
Maße: | 251 x 174 x 30 mm |
Von/Mit: | Peter Jamieson |
Erscheinungsdatum: | 29.05.2018 |
Gewicht: | 0,877 kg |
PETER JAMIESON is based at Strathclyde University for two days a week acting as a special technical advisor whilst also conducting independent research into wind energy. As a founder member of GL Garrad Hassan's Scottish office and of their Special Projects Department, he is uniquely positioned to offer the highest guidance in the future development of wind energy in the UK and beyond.
Foreword xv
Preface xvii
Acknowledgement xix
Introduction 1
0.1 Why Innovation? 1
0.2 The Challenge of Wind 2
0.3 The Specification of a Modern Wind Turbine 2
0.4 The Variability of the Wind 4
0.5 Early Electricity-Generating Wind Turbines 4
0.6 Commercial Wind Technology 6
0.7 Basis of Wind Technology Evaluation 7
0.7.1 Standard Design as Baseline 7
0.7.2 Basis of Technological Advantage 7
0.7.3 Security of Claimed Power Performance 8
0.7.4 Impact of Proposed Innovation 8
0.8 Competitive Status of Wind Technology 8
References 9
Part I Design Background 11
1 Rotor Aerodynamic Theory 13
1.1 Introduction 13
1.2 Aerodynamic Lift 14
1.3 Power in the Wind 16
1.4 The Actuator Disc Concept 17
1.5 Open Flow Actuator Disc 19
1.5.1 Power Balance 19
1.5.2 Axial Force Balance 20
1.5.3 Froude's Theorem and the Betz Limit 20
1.5.4 The Power Extraction Process 22
1.5.5 Relativity in a Fluid Flow Field 23
1.6 Why a Rotor? 25
1.7 Actuator Disc in Augmented Flow and Ducted Rotor Systems 26
1.7.1 Fundamentals 26
1.7.2 Generalised Actuator Disc 28
1.7.3 The Force on a Diffuser 36
1.7.4 Generalised Actuator Disc Theory and Realistic Diffuser Design 37
1.8 Blade Element Momentum Theory 38
1.8.1 Introduction 38
1.8.2 Momentum Equations 38
1.8.3 Blade Element Equations 40
1.8.4 Non-dimensional Lift Distribution 40
1.8.5 General Momentum Theory 41
1.8.6 BEM in Augmented Flow 42
1.8.7 Closed-Form BEM Solutions 44
1.9 Optimum Rotor Design 46
1.9.1 Optimisation to Maximise Cp 46
1.9.2 The Power Coefficient, Cp 48
1.9.3 Thrust Coefficient 51
1.9.4 Out-of-Plane Bending Moment Coefficient 52
1.9.5 Optimisation to a Loading Constraint 54
1.9.6 Optimisation of Rotor Design and Hub Flow 56
1.10 Limitations of Actuator Disc and BEM Theory 57
1.10.1 Actuator Disc Limitations 57
1.10.2 Inviscid Modelling and Real Flows 58
1.10.3 Wake Rotation and Tip Effect 58
1.10.4 Optimum Rotor Theory 59
1.10.5 Skewed Flow 59
1.10.6 Summary of BEM Limitations 59
References 60
2 Rotor Aerodynamic Design 65
2.1 Optimum Rotors and Solidity 65
2.2 Rotor Solidity and Ideal Variable Speed Operation 66
2.3 Solidity and Loads 68
2.4 Aerofoil Design Development 68
2.5 Sensitivity of Aerodynamic Performance to Planform Shape 73
2.6 Aerofoil Design Specification 74
2.7 Aerofoil Design for Large Rotors 75
References 77
3 Rotor Structural Interactions 79
3.1 Blade Design in General 79
3.2 Basics of Blade Structure 80
3.3 Simplified Cap Spar Analyses 82
3.3.1 Design for Minimum Mass with Prescribed Deflection 83
3.3.2 Design for Fatigue Strength: No Deflection Limits 83
3.4 The Effective t/c Ratio of Aerofoil Sections 84
3.5 Blade Design Studies: Example of a Parametric Analysis 85
3.6 Industrial Blade Technology 91
3.6.1 Design 91
3.6.2 Manufacturing 92
3.6.3 Design Development 94
References 94
4 Upscaling of Wind Turbine Systems 97
4.1 Introduction: Size and Size Limits 97
4.2 The 'Square-Cube' Law 100
4.3 Scaling Fundamentals 100
4.4 Similarity Rules for Wind Turbine Systems 102
4.4.1 Tip Speed 102
4.4.2 Aerodynamic Moment Scaling 103
4.4.3 Bending Section Modulus Scaling 103
4.4.4 Tension Section Scaling 103
4.4.5 Aeroelastic Stability 103
4.4.6 Self-Weight Load Scaling 103
4.4.7 Blade (Tip) Deflection Scaling 104
4.4.8 More Subtle Scaling Effects and Implications 104
4.4.8.1 Size Effect 104
4.4.8.2 Aerofoil Boundary Layer 104
4.4.8.3 Earth's Boundary Layer, Wind Shear and Turbulence 104
4.4.9 Gearbox Scaling 105
4.4.10 Support Structure Scaling 105
4.4.11 Power/Energy Scaling 105
4.4.12 Electrical Systems Scaling 106
4.4.13 Control Systems Scaling 106
4.4.14 Scaling Summary 106
4.5 Analysis of Commercial Data 107
4.5.1 Blade Mass Scaling 108
4.5.2 Shaft Mass Scaling 111
4.5.3 Scaling of Nacelle Mass and Tower Top Mass 112
4.5.4 Tower Top Mass 114
4.5.5 Tower Scaling 114
4.5.5.1 Height versus Diameter 114
4.5.5.2 Mass versus Diameter 115
4.5.5.3 Normalised Mass versus Diameter 116
4.5.6 Gearbox Scaling 118
4.6 Upscaling of VAWTs 119
4.7 Rated Tip Speed 120
4.8 Upscaling of Loads 121
4.9 Violating Similarity 123
4.10 Cost Models 124
4.11 Scaling Conclusions 125
References 126
5 Wind Energy Conversion Concepts 127
References 129
6 Drive-Train Design 131
6.1 Introduction 131
6.2 Definitions 131
6.3 Objectives of Drive-Train Innovation 132
6.4 Drive-Train Technology Maps 132
6.5 Direct Drive 136
6.6 Hybrid Systems 139
6.7 Geared Systems - the Planetary Gearbox 140
6.8 Drive Trains with Differential Drive 144
6.9 Hydraulic Transmission 145
6.10 Efficiency of Drive-Train Components 148
6.10.1 Introduction 148
6.10.2 Efficiency over the Operational Range 150
6.10.3 Gearbox Efficiency 151
6.10.4 Generator Efficiency 152
6.10.5 Converter Efficiency 153
6.10.6 Transformer Efficiency 153
6.10.7 Fluid Coupling Efficiency 153
6.11 Drive-Train Dynamics 154
6.12 The Optimum Drive Train 155
6.13 Innovative Concepts for Power Take-Off 157
References 160
7 Offshore Wind Technology 163
7.1 Design for Offshore 163
7.2 High-Speed Rotor 164
7.2.1 Design Logic 164
7.2.2 Speed Limit 164
7.2.3 Rotor Configurations 165
7.2.4 Design Comparisons 167
7.3 'Simpler' Offshore Turbines 170
7.4 Rating of Offshore Wind Turbines 171
7.5 Foundation and Support Structure Design 172
7.5.1 Foundation Design Concepts 172
7.5.2 Support Structure Design Concepts 173
7.5.3 Loads, Foundations and Costs 174
7.6 Electrical Systems of Offshore Wind Farms 175
7.6.1 Collection System for an Offshore Wind Farm 175
7.6.2 Integration of Offshore Wind Farms into Electrical Networks 177
7.6.2.1 High-Voltage Alternating Current (HVAC) 177
7.6.2.2 Current-Source Converter (CSC) 179
7.6.2.3 Voltage-Source Converter for Offshore Wind Farm Integration 180
7.7 Operations and Maintenance (O&M) 180
7.7.1 Introduction 180
7.7.2 Modelling 181
7.7.3 Inspection of Wind Turbines 182
7.8 Offshore Floating Wind Turbines 183
References 188
8 Future Wind Technology 191
8.1 Evolution 191
8.2 Present Trends - Consensus in Blade Number and Operational Concept 193
8.3 Present Trends - Divergence in Drive-Train Concepts 194
8.4 Future Wind Technology - Airborne 194
8.4.1 Introduction 194
8.4.2 KPS - Cable Tension Power Take-Off 198
8.4.2.1 Earth Axes 198
8.4.2.2 Kite Axes 198
8.4.2.3 BEM Application to the Kite as an Aerofoil Section (No Tip Loss Applied) 199
8.4.3 Daisy Kite - Rotary Power Transmission 202
8.4.4 Omnidea - Rotating Cylindrical Balloon as a Lifting Body 203
8.4.5 Makani 203
8.4.6 Airborne Conclusions 204
8.5 Future Wind Technology - Energy Storage 204
8.5.1 Types of Energy Storage 204
8.5.2 Battery Storage 204
8.5.3 Gas Pressure Storage 205
8.5.4 Compressed Air Storage 205
8.5.5 Flywheel Energy Storage 206
8.5.6 Thermal Energy Storage 206
8.6 Innovative Energy Conversion Solutions 207
8.6.1 Electrostatic Generator 207
8.6.2 Vibrating Column 208
References 208
Part II Technology Evaluation 211
9 Cost of Energy 213
9.1 The Approach to Cost of Energy 213
9.2 Energy: the Power Curve 216
9.3 Energy: Efficiency, Reliability, Availability 222
9.3.1 Efficiency 222
9.3.2 Reliability 222
9.3.3 Availability 223
9.4 Capital Costs 224
9.5 Operation and Maintenance 225
9.6 Overall Cost Split 226
9.7 Scaling Impact on Cost 227
9.8 Impact of Loads (Site Class) 228
References 232
10 Evaluation Methodology 235
10.1 Key Evaluation Issues 235
10.2 Fatal Flaw Analysis 235
10.3 Power Performance 236
10.3.1 The Betz Limit 236
10.3.2 The Pressure Difference across a Wind Turbine 237
10.3.3 Total Energy in the Flow 238
10.4 Structure and Essential Mass 239
10.5 Drive-Train Torque 241
10.6 Representative Baseline 241
10.7 Design Loads Comparison 242
10.8 Evaluation Example: Optimum Rated Power of a Wind Turbine 244
10.9 Evaluation Example: the Carter Wind Turbine and Structural Flexibility 246
10.10 Evaluation Example: Concept Design Optimisation Study 249
10.11 Evaluation Example: Ducted Turbine Design Overview 251
10.11.1 Extreme Loads 251
10.11.2 Drive-Train Torque 252
10.11.3 Energy Capture 252
References 253
Part III Design Themes 255
11 Optimum Blade Number 257
11.1 Energy Capture Comparisons 257
11.2 Blade Design Issues 258
11.3 Operational and System Design Issues 260
11.4 Multi-bladed Rotors 265
References 266
12 Pitch versus Stall 267
12.1 Stall Regulation 267
12.2 Pitch Regulation 269
12.3 Fatigue Loading...
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 416 S. |
ISBN-13: | 9781119137900 |
ISBN-10: | 111913790X |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: | Jamieson, Peter |
Auflage: | 2nd edition |
Hersteller: | Wiley |
Maße: | 251 x 174 x 30 mm |
Von/Mit: | Peter Jamieson |
Erscheinungsdatum: | 29.05.2018 |
Gewicht: | 0,877 kg |