Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
History Matching and Uncertainty Characterization
Using Ensemble-based Methods
Taschenbuch von Alexandre Emerick
Sprache: Englisch

79,00 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
In the last decade, ensemble-based methods have been widely investigated and applied for data assimilation of flow problems associated with atmospheric physics and petroleum reservoir history matching. Among these methods, the ensemble Kalman filter (EnKF) is the most popular one for history-matching applications. The main advantages of EnKF are computational efficiency and easy implementation. Moreover, because EnKF generates multiple history-matched models, EnKF can provide a measure of the uncertainty in reservoir performance predictions. However, because of the inherent assumptions of linearity and Gaussianity and the use of limited ensemble sizes, EnKF does not always provide an acceptable history-match and does not provide an accurate characterization of uncertainty. In this work, we investigate the use of ensemble-based methods, with emphasis on the EnKF, and propose modifications that allow us to obtain a better history match and a more accurate characterization of the uncertainty in reservoir description and reservoir performance predictions.
In the last decade, ensemble-based methods have been widely investigated and applied for data assimilation of flow problems associated with atmospheric physics and petroleum reservoir history matching. Among these methods, the ensemble Kalman filter (EnKF) is the most popular one for history-matching applications. The main advantages of EnKF are computational efficiency and easy implementation. Moreover, because EnKF generates multiple history-matched models, EnKF can provide a measure of the uncertainty in reservoir performance predictions. However, because of the inherent assumptions of linearity and Gaussianity and the use of limited ensemble sizes, EnKF does not always provide an acceptable history-match and does not provide an accurate characterization of uncertainty. In this work, we investigate the use of ensemble-based methods, with emphasis on the EnKF, and propose modifications that allow us to obtain a better history match and a more accurate characterization of the uncertainty in reservoir description and reservoir performance predictions.
Über den Autor
Alexandre Emerick has been a reservoir engineer at Petrobras Research Center (CENPES) since 2004. Emerick¿s research interests include reservoir simulation, history matching, uncertainty quantification and optimization. He holds a BS and MS degrees in Civil Eng. from Univ. de Brasilia and a PhD degree in Petroleum Eng. from the University of Tulsa.
Details
Erscheinungsjahr: 2012
Fachbereich: Allgemeines
Genre: Geowissenschaften
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 264 S.
ISBN-13: 9783659107283
ISBN-10: 365910728X
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Emerick, Alexandre
Hersteller: LAP LAMBERT Academic Publishing
Maße: 220 x 150 x 16 mm
Von/Mit: Alexandre Emerick
Erscheinungsdatum: 24.04.2012
Gewicht: 0,411 kg
Artikel-ID: 106497425
Über den Autor
Alexandre Emerick has been a reservoir engineer at Petrobras Research Center (CENPES) since 2004. Emerick¿s research interests include reservoir simulation, history matching, uncertainty quantification and optimization. He holds a BS and MS degrees in Civil Eng. from Univ. de Brasilia and a PhD degree in Petroleum Eng. from the University of Tulsa.
Details
Erscheinungsjahr: 2012
Fachbereich: Allgemeines
Genre: Geowissenschaften
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 264 S.
ISBN-13: 9783659107283
ISBN-10: 365910728X
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Emerick, Alexandre
Hersteller: LAP LAMBERT Academic Publishing
Maße: 220 x 150 x 16 mm
Von/Mit: Alexandre Emerick
Erscheinungsdatum: 24.04.2012
Gewicht: 0,411 kg
Artikel-ID: 106497425
Warnhinweis