267,49 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Examines genome-wide association studies, from the preliminary issues to statistical approaches and more
Features detailed, step-by-step instruction
Includes tips and expert implementation advice to ensure successful results
R for Genome-Wide Association Studies.- Descriptive Statistics of Data: Understanding the Data Set and Phenotypes of Interest.- Designing a Genome-Wide Association Studies (GWAS): Power, Sample Size, and Data Structure.- Managing Large SNP Datasets with SNPpy.- Quality Control for Genome-Wide Association Studies.- Overview of Statistical Methods for Genome-Wide Association Studies (GWAS).- Statistical Analysis of Genomic Data.- Using PLINK for Genome-Wide Association Studies (GWAS) and Data Analysis.- Genome-Wide Complex Trait Analysis (GCTA): Methods, Data Analyses, and Interpretations.- Bayesian Methods Applied to Genome-Wide Association Studies (GWAS).- Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology.- Genome-Enabled Prediction Using the BLR (Bayesian Linear Regression) R-Package.- Genomic Best Linear Unbiased Prediction (gBLUP) for the Estimation of Genomic Breeding Values.- Detecting Regions of Homozygosity to Map the Cause of Recessively Inherited Disease.- Use of Ancestral Haplotypes in Genome-Wide Association Studies.- Genotype Phasing in Populations of Closely Related Individuals.- Genotype Imputation to Increase Sample Size in Pedigreed Populations.- Validation of Genome-Wide Association Studies (GWAS) Results.- Detection of Signatures of Selection Using FST.- Association Weight Matrix: A Network-Based Approach Towards Functional Genome-Wide Association Studies.- Mixed Effects Structural Equation Models and Phenotypic Causal Networks.- Epistasis, Complexity, and Multifactor Dimensionality Reduction.- Applications of Multifactor Dimensionality Reduction to Genome-Wide Data Using the R Package 'MDR'.- Higher Order Interactions:Detection of Epistasis Using Machine Learning and Evolutionary Computation.- Incorporating Prior Knowledge to Increase the Power of Genome-Wide Association Studies.- Genomic Selection in Animal Breeding Programs.
Erscheinungsjahr: | 2013 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Biologie |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Methods in Molecular Biology |
Inhalt: |
xi
566 S. 36 s/w Illustr. 31 farbige Illustr. 566 p. 67 illus. 31 illus. in color. With online files/update. |
ISBN-13: | 9781627034463 |
ISBN-10: | 1627034463 |
Sprache: | Englisch |
Herstellernummer: | 80023264 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Gondro, Cedric
Hayes, Ben Werf, Julius van der |
Herausgeber: | Cedric Gondro/Julius van der Werf/Ben Hayes |
Hersteller: |
Humana Press
Humana Press Inc. Methods in Molecular Biology |
Maße: | 260 x 183 x 37 mm |
Von/Mit: | Cedric Gondro (u. a.) |
Erscheinungsdatum: | 12.06.2013 |
Gewicht: | 1,274 kg |
Examines genome-wide association studies, from the preliminary issues to statistical approaches and more
Features detailed, step-by-step instruction
Includes tips and expert implementation advice to ensure successful results
R for Genome-Wide Association Studies.- Descriptive Statistics of Data: Understanding the Data Set and Phenotypes of Interest.- Designing a Genome-Wide Association Studies (GWAS): Power, Sample Size, and Data Structure.- Managing Large SNP Datasets with SNPpy.- Quality Control for Genome-Wide Association Studies.- Overview of Statistical Methods for Genome-Wide Association Studies (GWAS).- Statistical Analysis of Genomic Data.- Using PLINK for Genome-Wide Association Studies (GWAS) and Data Analysis.- Genome-Wide Complex Trait Analysis (GCTA): Methods, Data Analyses, and Interpretations.- Bayesian Methods Applied to Genome-Wide Association Studies (GWAS).- Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology.- Genome-Enabled Prediction Using the BLR (Bayesian Linear Regression) R-Package.- Genomic Best Linear Unbiased Prediction (gBLUP) for the Estimation of Genomic Breeding Values.- Detecting Regions of Homozygosity to Map the Cause of Recessively Inherited Disease.- Use of Ancestral Haplotypes in Genome-Wide Association Studies.- Genotype Phasing in Populations of Closely Related Individuals.- Genotype Imputation to Increase Sample Size in Pedigreed Populations.- Validation of Genome-Wide Association Studies (GWAS) Results.- Detection of Signatures of Selection Using FST.- Association Weight Matrix: A Network-Based Approach Towards Functional Genome-Wide Association Studies.- Mixed Effects Structural Equation Models and Phenotypic Causal Networks.- Epistasis, Complexity, and Multifactor Dimensionality Reduction.- Applications of Multifactor Dimensionality Reduction to Genome-Wide Data Using the R Package 'MDR'.- Higher Order Interactions:Detection of Epistasis Using Machine Learning and Evolutionary Computation.- Incorporating Prior Knowledge to Increase the Power of Genome-Wide Association Studies.- Genomic Selection in Animal Breeding Programs.
Erscheinungsjahr: | 2013 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Biologie |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Reihe: | Methods in Molecular Biology |
Inhalt: |
xi
566 S. 36 s/w Illustr. 31 farbige Illustr. 566 p. 67 illus. 31 illus. in color. With online files/update. |
ISBN-13: | 9781627034463 |
ISBN-10: | 1627034463 |
Sprache: | Englisch |
Herstellernummer: | 80023264 |
Ausstattung / Beilage: | HC runder Rücken kaschiert |
Einband: | Gebunden |
Redaktion: |
Gondro, Cedric
Hayes, Ben Werf, Julius van der |
Herausgeber: | Cedric Gondro/Julius van der Werf/Ben Hayes |
Hersteller: |
Humana Press
Humana Press Inc. Methods in Molecular Biology |
Maße: | 260 x 183 x 37 mm |
Von/Mit: | Cedric Gondro (u. a.) |
Erscheinungsdatum: | 12.06.2013 |
Gewicht: | 1,274 kg |