131,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Daniel M. Spielman, PhD, is Professor of Radiology at Stanford University, Stanford, CA, USA. He is a fellow of both the American Institute for Medical & Biological Engineering (AIMBE) and International Society of Magnetic Resonance in Medicine (ISMRM), and has received multiple teaching awards including the ISMRM Outstanding Teacher Award (2005) and Stanford Department of Radiology Research Faculty of the Year (2022).
Keshav Datta, PhD, is Vice President, Research & Development, at VIDA Diagnostics Inc., Coralville, IA, USA, a precision lung health company, accelerating therapies to patients through AI-powered lung intelligence. He is also a Consulting Research Scientist at Stanford University, Stanford, CA, USA.
Preface xi
About the Companion Website xv
1 Introduction 1
1.1 A Brief History of MR 1
1.2 NMR versus MRI 3
1.3 The Roadmap 5
2 Classical Description of MR 11
2.1 Nuclear Magnetism 11
2.2 Net Magnetization and the Bloch Equations 13
2.3 Rf Excitation and Reception 14
2.4 Spatial Localization 15
2.5 The MRI Signal Equation 16
2.6 Summary 19
Exercises 20
Historical Notes 23
3 Quantum Mechanical Description of MR 27
3.1 Introduction 27
3.1.1 Why Quantum Mechanics for Magnetic Resonance? 27
3.1.2 Historical Developments 27
3.1.3 Wave Functions 29
3.2 Mathematics of QM 32
3.2.1 Linear Vector Spaces 32
3.2.2 Dirac Notation and Hilbert Space 33
3.2.3 Liouville Space 36
3.3 The Six Postulates of QM 38
3.3.1 Postulate 1 38
3.3.2 Postulate 2 38
3.3.3 Postulate 3 39
3.3.4 Postulate 4 39
3.3.5 Postulate 5 39
3.3.6 Postulate 6 40
3.4 MR in Hilbert Space 44
3.4.1 Review of Spin Operators 44
3.4.2 Single Spin in a Magnetic Field 44
3.4.3 Ensemble of Spins in a Magnetic Field 46
3.5 MR in Liouville Space 49
3.5.1 Statistical Mixture of Quantum States 50
3.5.2 The Density Operator 51
3.5.3 The Spin-lattice Disconnect 52
3.5.4 Hilbert Space versus Liouville Space 52
3.5.5 Observations About the Spin Density Operator 53
3.5.6 Solving the Liouville von Neuman Equation 55
3.6 Summary 57
Exercises 58
Historical Notes 61
4 Nuclear Spins 67
4.1 Review of the Spin Density Operator and the Hamiltonian 67
4.2 External Interactions 68
4.3 Internal Interactions 69
4.3.1 Chemical Shift 71
4.3.2 Dipolar Coupling 72
4.3.3 J Coupling 72
4.4 Summary 75
Exercises 75
Historical Notes 78
5 Product Operator Formalism 81
5.1 The Density Operator, Populations, and Coherences 81
5.1.1 Spin Systems and Associated Density Operators 81
5.1.2 Density Matrix Calculations 85
5.2 POF for Single-Spin Coherence Space 88
5.3 POF for Two-Spin Coherence Space 90
5.4 Branch Diagrams 94
5.5 Multiple Quantum Coherences and 2D NMR 97
5.6 Polarization Transfer 100
5.7 Spectral Editing 103
5.7.1 J-difference Editing 103
5.7.2 Multiple-quantum Filtering 104
5.8 Summary 105
Exercises 106
Historical Notes 111
6 In vivo MRS 113
6.1 1H MRS 113
6.1.1 Acquisition Methods 113
6.1.2 Detectable Metabolites and Applications 120
6.2 31P-MRS 126
6.3 13C-MRS 127
6.3.1 Acquisition Methods 127
6.3.2 13C Infusion Studies 132
6.3.3 Hyperpolarized 13 c 132
6.4 Deuterium Metabolic Imaging 138
6.5 23Na-MRI 140
6.6 Summary 140
Exercises 141
7 Relaxation Fundamentals 145
7.1 Basic Principles 145
7.1.1 Molecular Motion 145
7.1.2 Stochastic Processes 147
7.1.3 A Simple Model of Relaxation 150
7.2 Dipolar Coupling 153
7.2.1 The Solomon Equations 153
7.2.2 Calculating Transition Rates 155
7.2.3 Nuclear Overhauser Effect 158
7.3 Chemical Exchange 160
7.3.1 Introduction 160
7.3.2 Effects on Longitudinal Magnetization 161
7.3.3 Effects on Transverse Magnetization 162
7.3.4 Examples 164
7.4 In Vivo Water 167
7.4.1 Hydration Layers 167
7.4.2 Tissue Relaxation Times 168
7.4.3 Magic Angle Effects 169
7.4.4 Magnetization Transfer Contrast (MTC) 170
7.4.5 Chemical Exchange Saturation Transfer (CEST) 172
7.4.5.1 Amide Proton (-NH) Transfer (APT) 173
7.4.5.2 Hydroxyl (-OH) CEST 173
7.4.5.3 Amine (-NH2) CEST 173
7.5 Summary 174
Exercises 174
Historical Notes 179
8 Redfield Theory of Relaxation 181
8.1 Perturbation Theory and the Interaction Frame of Reference 181
8.2 The Master Equation of NMR 182
8.3 Calculating Relaxation Times 185
8.4 Relaxation Mechanisms 187
8.4.1 Dipolar Coupling Revisited 187
8.4.2 Scalar Relaxation of the 1 st Kind and 2 nd Kind 189
8.4.3 Chemical Shift Anisotropy (CSA) 191
8.5 Relaxation in the Rotating Frame 191
8.5.1 Physics of T1¿ 192
8.5.2 The Spin-Lock Experiment 194
8.5.3 Choosing the Optimum Spin-Lock Frequency 195
8.5.4 Rf Power Considerations 200
8.5.5 Adiabatic Spin-Lock 201
8.5.6 Applications 202
8.6 Illustrative Redfield Theory Examples 202
8.6.1 Hyperpolarized 13C-urea 202
8.6.2 Hyperpolarized 13C-Pyr 203
8.7 Summary 207
Exercises 208
Historical Notes 210
9 MRI Contrast Agents 213
9.1 Paramagnetic Relaxation Enhancement 213
9.1.1 Solomon-Bloembergen-Morgan Theory 215
9.1.2 Gd3+-Based T1 Contrast Agents 218
9.2 T2and T¿2Contrast Agents 219
9.2.1 T2, Diffusion, and Outer-Sphere Relaxation 219
9.2.2 SPIOs and USPIOs 219
9.3 PARACEST Contrast Agents 220
9.4 Contrast Agents in the Clinic 221
9.4.1 Gd-Based Agents 222
9.4.2 Iron-Based Agents 223
9.5 Summary 225
Exercises 225
10 In vivo Examples 229
10.1 Relaxation Properties of the Brain 229
10.1.1 Morphological Imaging 229
10.1.2 Perfusion Imaging 229
10.1.3 Diffusion-weighted Imaging (DWI) 230
10.1.4 Imaging Myelin 232
10.1.5 Susceptibility-weighted Imaging (SWI) 232
10.2 Relaxation Properties of Blood 233
10.2.1 Hemoglobin and Red Blood Cells 233
10.2.2 MRI Blood Oximetry 235
10.2.3 Functional Magnetic Resonance Imaging (fMRI) 236
10.2.4 MRI of Hemorrhage 238
10.3 Relaxation Properties of Cartilage 241
10.3.1 T2Mapping 243
10.3.2 DWI 244
10.3.3 T1¿ Mapping and Dispersion 244
10.3.4 gagCEST 245
10.3.5 dGEMRIC 245
10.3.6 Ultrashort TE (UTE) Imaging 246
10.3.7 Sodium MRI 246
10.3.8 Summary 248
10.4 Synopsis 248
Exercises 249
Further Readings 251
Quantum Mechanics 251
Spin Physics 251
Magnetic Resonance Imaging (MRI) 251
In vivo Magnetic Resonance Spectroscopy 251
Relaxation Theory 252
Clinical MRI 252
References 253
Index 265
Erscheinungsjahr: | 2024 |
---|---|
Fachbereich: | Fertigungstechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Preface xiAbout the Companion Website xv1 Introduction 11.1 A Brief History of MR 11.2 NMR versus MRI 31.3 The Roadmap 52 Classical Description of MR 112.1 Nuclear Magnetism 112.2 Net Magnetization and the Bloch Equations 132.3 Rf Excitation and Receptio |
ISBN-13: | 9781394233090 |
ISBN-10: | 1394233094 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Spielman, Daniel M.
Datta, Keshav |
Hersteller: | John Wiley & Sons Inc |
Maße: | 254 x 179 x 17 mm |
Von/Mit: | Daniel M. Spielman (u. a.) |
Erscheinungsdatum: | 19.03.2024 |
Gewicht: | 0,62 kg |
Daniel M. Spielman, PhD, is Professor of Radiology at Stanford University, Stanford, CA, USA. He is a fellow of both the American Institute for Medical & Biological Engineering (AIMBE) and International Society of Magnetic Resonance in Medicine (ISMRM), and has received multiple teaching awards including the ISMRM Outstanding Teacher Award (2005) and Stanford Department of Radiology Research Faculty of the Year (2022).
Keshav Datta, PhD, is Vice President, Research & Development, at VIDA Diagnostics Inc., Coralville, IA, USA, a precision lung health company, accelerating therapies to patients through AI-powered lung intelligence. He is also a Consulting Research Scientist at Stanford University, Stanford, CA, USA.
Preface xi
About the Companion Website xv
1 Introduction 1
1.1 A Brief History of MR 1
1.2 NMR versus MRI 3
1.3 The Roadmap 5
2 Classical Description of MR 11
2.1 Nuclear Magnetism 11
2.2 Net Magnetization and the Bloch Equations 13
2.3 Rf Excitation and Reception 14
2.4 Spatial Localization 15
2.5 The MRI Signal Equation 16
2.6 Summary 19
Exercises 20
Historical Notes 23
3 Quantum Mechanical Description of MR 27
3.1 Introduction 27
3.1.1 Why Quantum Mechanics for Magnetic Resonance? 27
3.1.2 Historical Developments 27
3.1.3 Wave Functions 29
3.2 Mathematics of QM 32
3.2.1 Linear Vector Spaces 32
3.2.2 Dirac Notation and Hilbert Space 33
3.2.3 Liouville Space 36
3.3 The Six Postulates of QM 38
3.3.1 Postulate 1 38
3.3.2 Postulate 2 38
3.3.3 Postulate 3 39
3.3.4 Postulate 4 39
3.3.5 Postulate 5 39
3.3.6 Postulate 6 40
3.4 MR in Hilbert Space 44
3.4.1 Review of Spin Operators 44
3.4.2 Single Spin in a Magnetic Field 44
3.4.3 Ensemble of Spins in a Magnetic Field 46
3.5 MR in Liouville Space 49
3.5.1 Statistical Mixture of Quantum States 50
3.5.2 The Density Operator 51
3.5.3 The Spin-lattice Disconnect 52
3.5.4 Hilbert Space versus Liouville Space 52
3.5.5 Observations About the Spin Density Operator 53
3.5.6 Solving the Liouville von Neuman Equation 55
3.6 Summary 57
Exercises 58
Historical Notes 61
4 Nuclear Spins 67
4.1 Review of the Spin Density Operator and the Hamiltonian 67
4.2 External Interactions 68
4.3 Internal Interactions 69
4.3.1 Chemical Shift 71
4.3.2 Dipolar Coupling 72
4.3.3 J Coupling 72
4.4 Summary 75
Exercises 75
Historical Notes 78
5 Product Operator Formalism 81
5.1 The Density Operator, Populations, and Coherences 81
5.1.1 Spin Systems and Associated Density Operators 81
5.1.2 Density Matrix Calculations 85
5.2 POF for Single-Spin Coherence Space 88
5.3 POF for Two-Spin Coherence Space 90
5.4 Branch Diagrams 94
5.5 Multiple Quantum Coherences and 2D NMR 97
5.6 Polarization Transfer 100
5.7 Spectral Editing 103
5.7.1 J-difference Editing 103
5.7.2 Multiple-quantum Filtering 104
5.8 Summary 105
Exercises 106
Historical Notes 111
6 In vivo MRS 113
6.1 1H MRS 113
6.1.1 Acquisition Methods 113
6.1.2 Detectable Metabolites and Applications 120
6.2 31P-MRS 126
6.3 13C-MRS 127
6.3.1 Acquisition Methods 127
6.3.2 13C Infusion Studies 132
6.3.3 Hyperpolarized 13 c 132
6.4 Deuterium Metabolic Imaging 138
6.5 23Na-MRI 140
6.6 Summary 140
Exercises 141
7 Relaxation Fundamentals 145
7.1 Basic Principles 145
7.1.1 Molecular Motion 145
7.1.2 Stochastic Processes 147
7.1.3 A Simple Model of Relaxation 150
7.2 Dipolar Coupling 153
7.2.1 The Solomon Equations 153
7.2.2 Calculating Transition Rates 155
7.2.3 Nuclear Overhauser Effect 158
7.3 Chemical Exchange 160
7.3.1 Introduction 160
7.3.2 Effects on Longitudinal Magnetization 161
7.3.3 Effects on Transverse Magnetization 162
7.3.4 Examples 164
7.4 In Vivo Water 167
7.4.1 Hydration Layers 167
7.4.2 Tissue Relaxation Times 168
7.4.3 Magic Angle Effects 169
7.4.4 Magnetization Transfer Contrast (MTC) 170
7.4.5 Chemical Exchange Saturation Transfer (CEST) 172
7.4.5.1 Amide Proton (-NH) Transfer (APT) 173
7.4.5.2 Hydroxyl (-OH) CEST 173
7.4.5.3 Amine (-NH2) CEST 173
7.5 Summary 174
Exercises 174
Historical Notes 179
8 Redfield Theory of Relaxation 181
8.1 Perturbation Theory and the Interaction Frame of Reference 181
8.2 The Master Equation of NMR 182
8.3 Calculating Relaxation Times 185
8.4 Relaxation Mechanisms 187
8.4.1 Dipolar Coupling Revisited 187
8.4.2 Scalar Relaxation of the 1 st Kind and 2 nd Kind 189
8.4.3 Chemical Shift Anisotropy (CSA) 191
8.5 Relaxation in the Rotating Frame 191
8.5.1 Physics of T1¿ 192
8.5.2 The Spin-Lock Experiment 194
8.5.3 Choosing the Optimum Spin-Lock Frequency 195
8.5.4 Rf Power Considerations 200
8.5.5 Adiabatic Spin-Lock 201
8.5.6 Applications 202
8.6 Illustrative Redfield Theory Examples 202
8.6.1 Hyperpolarized 13C-urea 202
8.6.2 Hyperpolarized 13C-Pyr 203
8.7 Summary 207
Exercises 208
Historical Notes 210
9 MRI Contrast Agents 213
9.1 Paramagnetic Relaxation Enhancement 213
9.1.1 Solomon-Bloembergen-Morgan Theory 215
9.1.2 Gd3+-Based T1 Contrast Agents 218
9.2 T2and T¿2Contrast Agents 219
9.2.1 T2, Diffusion, and Outer-Sphere Relaxation 219
9.2.2 SPIOs and USPIOs 219
9.3 PARACEST Contrast Agents 220
9.4 Contrast Agents in the Clinic 221
9.4.1 Gd-Based Agents 222
9.4.2 Iron-Based Agents 223
9.5 Summary 225
Exercises 225
10 In vivo Examples 229
10.1 Relaxation Properties of the Brain 229
10.1.1 Morphological Imaging 229
10.1.2 Perfusion Imaging 229
10.1.3 Diffusion-weighted Imaging (DWI) 230
10.1.4 Imaging Myelin 232
10.1.5 Susceptibility-weighted Imaging (SWI) 232
10.2 Relaxation Properties of Blood 233
10.2.1 Hemoglobin and Red Blood Cells 233
10.2.2 MRI Blood Oximetry 235
10.2.3 Functional Magnetic Resonance Imaging (fMRI) 236
10.2.4 MRI of Hemorrhage 238
10.3 Relaxation Properties of Cartilage 241
10.3.1 T2Mapping 243
10.3.2 DWI 244
10.3.3 T1¿ Mapping and Dispersion 244
10.3.4 gagCEST 245
10.3.5 dGEMRIC 245
10.3.6 Ultrashort TE (UTE) Imaging 246
10.3.7 Sodium MRI 246
10.3.8 Summary 248
10.4 Synopsis 248
Exercises 249
Further Readings 251
Quantum Mechanics 251
Spin Physics 251
Magnetic Resonance Imaging (MRI) 251
In vivo Magnetic Resonance Spectroscopy 251
Relaxation Theory 252
Clinical MRI 252
References 253
Index 265
Erscheinungsjahr: | 2024 |
---|---|
Fachbereich: | Fertigungstechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Preface xiAbout the Companion Website xv1 Introduction 11.1 A Brief History of MR 11.2 NMR versus MRI 31.3 The Roadmap 52 Classical Description of MR 112.1 Nuclear Magnetism 112.2 Net Magnetization and the Bloch Equations 132.3 Rf Excitation and Receptio |
ISBN-13: | 9781394233090 |
ISBN-10: | 1394233094 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Spielman, Daniel M.
Datta, Keshav |
Hersteller: | John Wiley & Sons Inc |
Maße: | 254 x 179 x 17 mm |
Von/Mit: | Daniel M. Spielman (u. a.) |
Erscheinungsdatum: | 19.03.2024 |
Gewicht: | 0,62 kg |